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Simplest example: SU(2) x U(1) theory

» N = 2 theory with gauge group SU(2) x U(1)
» Fayet-lliopoulos term &

» N; massless hypermultiplets ga, Ga in (2,1), (2, —1) reps
» U(N;) flavor symmetry

Bosonic part of the Lagrangian (neglecting ¢°, #°):
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Higgs phase: color-flavor locked vacuum g* = §*" = \/g <é 2)
Form of the vacuum invariant under SU(2)c ¢ global symmetry
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Introduction
Simplest example: SU(2) x U(1)

Simplest example: SU(2) x U(1) theory

N = 2 theory with gauge group SU(2) x U(1)
Fayet-lliopoulos term &

N; massless hypermultiplets ga, Ga in (2,1), (2, —1) reps
U (N;) flavor symmetry

vV vV v Vv

Bosonic part of the Lagrangian (neglecting ¢°, ¢°):
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Higgs phase: color-flavor locked vacuum g," = §,""' = 5lo 1

Form of the vacuum invariant under SU(2)c. ¢ global symmetry
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Introduction
Simplest example: SU(2) x U(1)

Non-abelian vortex equations

Look for solutions not depending on z,t. Ansatz q = dT
Bogomolny bound for the tension T > ‘/d —

Eii
2/3 iF

Fi]p gz €|Jthbq =0
Non-abelian BPS equations: Fi? 75ij(qu -£6)=0
DiqA + iEiijqA =0
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Introduction
Simplest example: SU(2) x U(1)

Non-abelian vortex equations

Look for solutions not depending on z,t. Ansatz q = dT

Bogomolny bound for the tension T > ‘/d —

Eii
Zf 'J
Fi]p gz €|Jthbq =0
Non-abelian BPS equations: F.? 75ij(qu —¢)=0
DiqA + iEiijqA =0
Ansatz for the vortex solution

J hi(r) =hy(r) =0
Al = —ha(r)sier2 h;( 0) = 027 ha(o0) = Ny — 11,
_ einlﬁ@]_(r) . 0 hO(O) - 0, hO(OO) g3(n1 + nz)
| 0 eMip(r)  ealoo) = paloo) = /5
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Non-abelian vortex solutions

» Solutions are classified by positive integers (n1, nz). Their
tension is

T = 27T£ |n1 + n2|

» Topological classification 7y (%ﬁum) =m(U(2)=Z
Minimal loops: n1 +n, = 1, half winding in U(1) and half in SU(2)

From every solution we can build other solutions by applying

SU(2)c 4 transformations q'(r, J) = U q(r, z/)Ué F

SU(2)c..r transformations interpolate between fundamental
vortices (1,0) and (0, 1) — solutions in SU(2)/U(1) = CP?
Moduli space of fundamental vortices (T = 27¢) is C x CP?
(position x internal d.o.f.) with SU(2) isometry

o 5 =
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Introduction
Simplest example: SU(2) x U(1)

Non-abelian vortex solutions

\/

Solutions are classified by positive integers (n1, nz). Their
tension is
T = 27¢ Ny + Ny

» Topological classification 73 (%W) =m(U(2) =Z
Minimal loops: n1 +n, = 1, half winding in U(1) and half in SU(2)

» From every solution we can build other solutions by applying
SU(2)c. transformations q'(r, 9) = Uc+Fq(r,ﬁ)Ué+F

» SU(2)c . transformations interpolate between fundamental
vortices (1,0) and (0,1) — solutions in SU(2)/U(1) = CP?

» Moduli space of fundamental vortices (T = 27¢) is C x CP?
(position x internal d.o.f.) with SU(2) isometry
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Introduction

Vortex solutions in U(N)

Non-abelian vortices in U(N)

e™’pi(r) 0 0
0 e™lpy(r) 0
m Ansatz q = 0 0 eins? (1)

m Solutions classified by positive integers (ny, Nz, n3...) with
tension T =27&|ng + N2+ N3 + ...

m Topological classification 7, (%qu(l)) =m(UN)) =Z
Minimal loops: Ny +nz +n3 +... =1, 1/N winding in U(1) and
1/N in SU(N)

m SU(N)c.r transformations on vortices

m Fundamental vortices: (1,0,0...) and its SU(N)c,¢ orbit
Moduli space C x CPN~1 with SU(N) isometry (Fubini-Study
metric)
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Introduction

Vortex solutions in U(N)

Moduli spaces of U(N) non-abelian vortices

Moduli matrix approach
BPS equations for vortices:
2
(D1+iD2) q=0, FP+< (ciy—qqf)=0, FP+%qltag =0
These equations can be solved as

q=S"%z,Z2)Ho(z), AL +iA;=-2iS"%z,2)9,S(z,2)

where S is an N x N invertible matrix over the whole z plane, and
Ho (moduli matrix) is holomorphic in z, defined modulo a nonsingular
holomorphic N x N matrix V (z):

Ho(z) — V(z)Ho(z), S(z,z*) — V(z)S(z,z*)

One more equation for Q = S ST, but expected to give no additional
moduli: 9, (Q710; Q) = f% Tr (t2Q1qqf)ta — & Tr (2 tqqf — 1)
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Introduction

Vortex solutions in U(N)

Moduli spaces of U(N) non-abelian vortices

Moduli matrix approach
BPS equations for vortices:
2
(D1+iD2) q=0, FP+< (ciy—qqf)=0, FP+%qltag =0
These equations can be solved as

q=S"%z,Z2)Ho(z), AL +iA;=-2iS"%z,2)9,S(z,2)

where S is an N x N invertible matrix over the whole z plane, and
Ho (moduli matrix) is holomorphic in z, defined modulo a nonsingular
holomorphic N x N matrix V (z):

Ho(z) — V(z)Ho(z), S(z,z*) — V(z)S(z,z*)

One more equation for Q = S ST, but expected to give no additional
moduli: 9, (Q710; Q) = f% Tr (t2Q1qqf)ta — & Tr (2 tqqf — 1)

Moduli space for composites of k minimal vortices (T = 2xw¢k):
{Ho(z)|det(Ho) ~ z*, z — 00} / {V(z)| det(V) = const # 0}
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Introduction

Vortex solutions in U(N)

U(N) vortices of higher winding

Physically det(Ho) ~ (z — z1)(z — z2)(z — z3) . . . describes position of
vortices

Consider the case of coincident vortices:

U(2) example

In k = 2 case, moduli space has three patches

Ho z? 0. zZ—¢ 7 . 1 —az-b
o=\ —az-b 1)’ 7oz ) 0 z2

with constraint ¢? + n7j = 0 (Z, singularity at the origin)
These patches cover the manifold W(CP(zz’l’l)
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Introduction

Vortex solutions in U(N)

U(N) vortices of higher winding

Physically det(Ho) ~ (z — z1)(z — z2)(z — z3) . . . describes position of
vortices

Consider the case of coincident vortices:

U(2) example

In k = 2 case, moduli space has three patches

Ho z? 0. zZ—¢ 7 . 1 —az-b
o=\ —az-b 1)’ 7oz ) 0 z2

with constraint ¢? + n7j = 0 (Z, singularity at the origin)
These patches cover the manifold W(CP(zz’l’l)

In U(N) theories, moduli space for k = 2 coincident vortices is

(1,...1,0) N SU(N+1
WGryy 5 where Gryiy 2 ~ SU(N71)>£SU(2))><U(1)
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Introduction

Vortex solutions in U(N)

Developments in the study of non-abelian vortices

m Works in ' = 2 SU(N) theories:
m BPS local and semilocal vortex solutions

m Complete moduli spaces obtained with different tecniques (but
unknown metric for higher winding)

m Correspondence between BPS states in 2d and 4d field theories:
A < \Vortex junctions < sy peiee
on the worldsheet J in the 4d theory

m Reconnection of cosmic strings

® Monopole confinement
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Introduction

Vortex solutions in U(N)

Developments in the study of non-abelian vortices

m Works in ' = 2 SU(N) theories:
m BPS local and semilocal vortex solutions

m Complete moduli spaces obtained with different tecniques (but
unknown metric for higher winding)

m Correspondence between BPS states in 2d and 4d field theories:
A < \Vortex junctions < sy peiee
on the worldsheet J in the 4d theory

m Reconnection of cosmic strings

® Monopole confinement

m Recent directions:
m Non-abelian vortices in SO(N) theories

m Non-abelian vortices in A/ = 1 SQCD and non-SUSY theories
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Non-abelian vortices in SO(N) x U(1) Construction of vortex solutions

Non-abelian vortices in SO(N) x U(1)

N = 2 theory with gauge group SO(2N) x U(1) and fields ga, dj\ in
the (2N, +1) representation

1 1

L = _7F0MVFOV_ Fb;,waV_’_‘D qA|2+’D q ‘
4gf " 4gdy S 1A
92N

\th ga — Gat qA’ — 293\ |thqu|

—Il ‘QLQA = QAQA‘ — 07 |Ga0a — f\ +-

1 1 0 O
: 1 i —i 0 O
_Eh_ /€ 1 ]lo o 1 1

Vacuum invariant under SO(2N)c ¢
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Non-abelian vortices in SO(N) x U(1) Construction of vortex solutions

Ansatz for the solutions

r
A = ha(r)t? g sz t2 generators of SO(2N) Cartan subalgebra

einfﬁ +(I’) einfﬂwi(r) 0 0

e Pt (r) —ie™ Ypr(r) 0 0
q(r719) _ = 0) 0 elnzﬁ@ ( ) ein_ﬁwz—(r)
vzl o 0 () e ()
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Non-abelian vortices in SO(N) x U(1) Construction of vortex solutions

Ansatz for the solutions

r
A = ha(r)t? g sz t2 generators of SO(2N) Cartan subalgebra

eVl (r) M Ppr(r) 0 0
ieM Pl (r) —ieM Py (r) 0 0
I % 0 0 e'_“zfgo;(r) e Yooy (1)
2 0 0 ien Pt (r)  —ie Yy ()
Finite-energy conditions: 0z (o0) = 2?\1
nt = n© = n@ n® =1 pois): n@® =L h ()
a + ) \/E 0 ’ \/é a

:>N0:n:+na_, T:27T5|N0|
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Non-abelian vortices in SO(N) x U(1)
Topology and moduli spaces

Moduli space of SO(N) non-abelian vortices

Vortex solutions are classified by 2N + 1 integers No,ni which satisfy
the following conditions:

nF+nzy =No, Va
sign(ny’) = sign(ny ) = sign(No) , va

Fundamental vortices belong to two classes of 2N—! elements:

ny  ng 10 01
nyj n, 10 01
NO = 1a = ) 10 ) )
nh . Ny, 10 :
ny ny 10 10
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Non-abelian vortices in SO(N) x U(1)
Topology and moduli spaces

Moduli space of SO(N) non-abelian vortices

ny ng 10 10
ny ny 10 -
NO — :I.7 . — I 1 0 ? ?
Nu_1 Nn_1 10 0 1
N ny 0 1 10

Vacuum invariant under SO(2N)c.r symmetry; the two classes

above belong to two different orbits.
Each solution is invariant under a subgroup U(N) € SO(2N)c.r

= moduli space composed by a pair of coset spaces
M =SO(2N)/U(N)

Moduli space for higher windings not known
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Non-abelian vortices in SO(N) x U(1)
Topology and moduli spaces

Topology of SO(N) non-abelian vortices

The gauge group is S22%*8 which has a nontrivial homotopy
group
(SO(ZN) « U(1)
m | ———"
Zy

This is because of the equivalence relation (1,—-1) ~ (—1,1)

= the minimal nontrivial element of 7r; corresponds to half winding in
U(1) and half winding in SO(2N). But there are two inequivalent
possibilities for winding in SO(2N), so there are two minimal
elements.

>—Z><Zz

The two classes of minimal vortices correspond to these two
topologically inequivalent paths = no solutions interpolating between
these classes.
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Non-abelian vortices in SO(N) x U(1)
Topology and moduli spaces

Non-abelian vortices in SO(N + 1)

My(r, o) --- 0] 0
Similar ansatz q(r, ) =
: <o Mn(r, ) 0
0 0 e""a(r)
Finite energy gives the condition n = h°\(/%°) = % that implies No must

be even (n(© integer)

Consistent with topology because 71(SO(2N + 1) x U(1)) = Z x Z;
where the minimum loop is a complete winding around U (1)

SO(2N + 1)c,¢ symmetry, all minimal vortices belong to the same
orbit = moduli space SO(2N + 1)/U(N)
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Framework of the correspondence
Vortices and monopoles

Non-abelian monopoles

Non-abelian monopoles are generalizations of t’'Hooft-Polyakov
monopoles from the breaking SU(2) — U(1) to the case of theories
with gauge symmetry breaking pattern G — H with H non-abelian.

Can be seen as t'Hooft-Polyakov monopoles of some SU(2)
subgroup embedded in G which gets broken to U(1) C H.
Example: SU(3) — SU(2) x U(1)

v 0 O

@) ~[0 v o

0 0 —2v
Monopoles embedded in broken SU(2) subgroups
CP! moduli space with SU(2) isometry

Problems with non-abelian: non-normalizable zero-modes,
topological obstructions in defining global electric charge
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Framework of the correspondence
Vortices and monopoles

Monopole confinement

Consider a theory with this pattern of symmetry breaking:

G A% HYZ1 visw

m Existence of stable monopoles depend on the group m2(G/H), so
guaranteed only in the limitv, — 0

m Existence of stable vortices depend on the group 7;(H) and only
guaranteed if vo # 0
What is the fate of monopoles when v, # 0? Monopole-antimonopole
pairs become confined by a vortex string (or, in the case of a single

monopole, its magnetic flux becomes a vortex at distances greater
than 1/v5).

Luca Ferretti
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Framework of the correspondence
Vortices and monopoles

Topological correspondence

The topological correspondence
m2(G/H) = m(H)/m(G)

shows that vortices and monopoles are topologically related.

m If the gauge group G is simply connected, there is a one-to-one
relation between regular monopoles and vortices

m If the gauge group is not simply connected, then for each
monopole (regular but also Dirac) there is a corresponding vortex

Luca Ferretti Non-abelian vortices in A/ = 2 gauge theories



Framework of the correspondence
Vortices and monopoles

Flux matching

To obtain a precise correspondence between monopoles and
vortices, we can match their magnetic fluxes:

Flux of the vortex
at scale 1/v,
and far from the monopole

Flux of the monopole
at scale 1/v;

(—’_ e
Easy for the abelian flux, not always easy for the non-abelian flux

Luca Ferretti Non-abelian vortices in N = 2 gauge theories



Introduction
Non-abelian vortices in SO(N) x U(1) Framework of the correspondence

Vortices and monopoles Explicit examples
Conclusions

Monopole-vortex correspondence

Conjecture: there is a strong correspondence between minimal
non-abelian monopoles and non-abelian vortices arising as
approximately BPS solitons in theories with gauge symmetry
breaking patternG — H — 1

Both minimal monopoles and minimal vortices are described by CP?
with SU(2) isometry.

Topology: m2(SU(3)/U(2)) = m1(U(2)) = Z
Abelian and non-abelian magnetic fluxes match correctly.

Note that the isometries have different origin: SU(2)¢ transformations
on monopoles, global SU(2)c. ¢ transformations on vortices

o 5 =

Luca Ferretti Non-abelian vortices in N” = 2 gauge theories



Framework of the correspondence
Vortices and monopoles

Monopole-vortex correspondence

Conjecture: there is a strong correspondence between minimal
non-abelian monopoles and non-abelian vortices arising as
approximately BPS solitons in theories with gauge symmetry
breaking patternG — H — 1

Example: SU(3) — SU(2) x U(1)

Both minimal monopoles and minimal vortices are described by CP?!
with SU(2) isometry.

Topology: m2(SU(3)/U(2)) = m(U(2)) = Z
Abelian and non-abelian magnetic fluxes match correctly.

Note that the isometries have different origin: SU(2)c transformations
on monopoles, global SU(2)c. ¢ transformations on vortices
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Vortices and monopoles Explicit examples

Explicit examples: SU(N +1) - U(N) — 1
N = 2 high-energy lagrangian with gauge group SU(N + 1)
Lsun+1) = g=Im Sg [[d*0dTeVd + [d20 IWW] + £ + [ d26 1 Tr ¢2

LO =Y, [fd“e {Q'eVQi + Qe VQ} + [d?0 {v2QioQ' + mQ; Qi}}
m 0 O 0]

d=_—21 o . :
V21 0 ... m 0
0 ... 0 —Nm

Low-energy lagrangian becomes U(N) theory with Fl term £ = um
Need i < m to have a hierarchy /€ ~ v, < vi ~m

Trivial generalization of SU(3) — SU(2) x U(1):

Both minimal monopoles and minimal vortices described by CPN—1
Topology: m>(SU(N +1)/U(N)) =71 (U(N)) =Z

Magnetic fluxes match correctly.
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Vortices and monopoles Explicit examples

SO(2N) - U(N) — 1

Symmetry breaking ¢ =

Monopoles embedded in SO(4) ~ SU(2) x SU(2) subgroups

Flux matching suggests that monopoles correspond to k = 2 vortices
classified by (2,0,0...). Both monopoles and these vortices
transform as CPN~1. Consistent with topological classification
m2(SO(2N)/U(N)) = m(U(N))/Z,

Luca Ferretti Non-abelian vortices in N/ = 2 gauge theories



Vortices and monopoles Explicit examples

SO(2N) - U(N) — 1

Symmetry breaking ¢ =

Monopoles embedded in SO(4) ~ SU(2) x SU(2) subgroups

Flux matching suggests that monopoles correspond to k = 2 vortices
classified by (2,0,0...). Both monopoles and these vortices
transform as CPN~1. Consistent with topological classification
m2(SO(2N)/U(N)) = m(U(N))/Z,

However, (2,0,0...) vortices are only a submanifold of k = 2 moduli
space. In the U(2) case, they form CP* C WCP{, , ,,. What about
the other vortices? Correspondence does not seem to work here. . .
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Vortices and monopoles Explicit examples

SO(ZN —|—1) — U(N) —1

0O iv 0 0 O

—-iv. 0 0 0 O

Simplest case SO(5): ¢ = 0O 0O 0 iv O
0 0O —-iv 0 O

0 0 0 0 O

New minimal monopoles from SO(3) embeddings, but also
interpolating solutions, all degenerate in mass! (E.Weinberg)

Moduli space of these monopoles is a manifold C?/Z, | J CP*?

Moduli space of k = 2 vortices is W(CP(ZZ_M) which has the same
topological structure and singularities!

Flux matching only possible for some solutions, but consistent with
this picture. The same for topology:
m2(SO(2N +1)/U(N)) = m1(U(N))/Z2
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Vortices and monopoles Explicit examples

SO(2N +2) — SO(2N) x U(1) — 1

High-energy theory with matter in the adjoint rep

0O iv 0 O

—iv 0 0 O

®— 0O 0 0O
0O 0O 0O
Monopoles embedded in SO(3) subgroups

Low-energy theory contains massless matter multiplets in the
fundamental representation

As before, flux matching suggests that monopoles correspond to

No = 2 vortices
01 1 ... 1
2 1 1 ... 1
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Vortices and monopoles Explicit examples

SO(2N +2) — SO(2N) x U(1) — 1

Consistent with topology, because

SO(2N +2)/ . m(U(1) x SO(2N)/Zy)
(1) x so@N)z5) 7

Both vortices and monopoles seem to form a complex quadric
surface SO(2N)/U(1) x SO(2N — 2) with SO(2N) isometry

But impossible to compare because of lack of knowledge about true
moduli space for vortices of higher winding

The same problem for SO(2N + 3) — SO(2N +1) x U(1) — 1

Luca Ferretti Non-abelian vortices in N/ = 2 gauge theories



Conclusions

Conclusions

m Monopole confinement:

m Monopole-vortex correspondence seems good
m More checks in SO and USp

m Which confinement? non-BPS corrections. . .
m Explicit metric on moduli space?

m Vortices in SO(N):

m Explicit solutions available
m Moduli space for N > 1?
m Semilocal vortices, vortex junctions. ..

(In general, interesting applications of non-abelian vortices in ' = 1 SUSY
orless...)
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