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Introduction

I Generalized Chern-Simons terms are terms of the form

C(CS)
AB,C WC ∧WA ∧ FB .

I They can appear in certain flux compactifications and Scherk-Schwarz
compactifications, where they are associated with the gauging of certain
axionic shift symmetries (Andrianopoli, d’Auria, Ferrara, Lledo, de Wit, Samtleben,
Trigiante).

I Recently their importance has been stressed in anomaly cancellation in
orientifold models with intersecting D-branes (Anastasopoulos, Bianchi, Dudas,
Kiritsis).

I In extended supersymmetry and supergravity, their presence is well-known
(de Wit, Lauwers, Van Proeyen).

I Goal of this talk : Clarify the role of generalized Chern-Simons terms and
anomalies in obtaining gauge-invariant and supersymmetricN = 1 actions.
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Symplectic transformations in N = 1 supergravity

I Consider N = 1 supergravity coupled to chiral multiplets and vector
multiplets.

I The kinetic terms for the vector fields read:

e−1L1 = − 1
4 Re fABFA

µνFµν B + 1
4 i Im fABFA

µν F̃µν B

The gauge kinetic function fAB(z) depends holomorphically on the scalar
fields zi.

I Gauge transformation under which zi transform non-trivially can induce a
gauge transformation of fAB(z).

I E.g. : gauge kinetic function transforms as a symmetric two-tensor in the
adjoint representation.

δ(Λ)fAB = ΛCδCfAB , δCfAB = fCA
DfBD + fCB

DfAD ,

where ΛA(x) are the parameters of the gauge transformations and fAB
C are

the structure constants.
⇒ kinetic terms of the vectors are obviously gauge invariant.
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Symplectic transformations in N = 1 supergravity

I In fact : a more general transformation law for the gauge kinetic function is
allowed, as is suggested by the symplectic formulation of N = 1
supergravity.

I Rewrite the kinetic terms of the vectors as:

e−1L1 = −1
2

Im
(

F−A
µν Gµν−A

)
, Gµν−A = −2i

∂e−1L1

∂F− A
µν

= ifABFµν− B .

The combined set of field equations and Bianchi identities

∂µ Im FA−
µν = 0 Bianchi identities,

∂µ Im Gµν−A = 0 Equations of motion.

is then invariant under the symplectic transformations(
F′−

G′−

)
= S

(
F−

G−

)
=
(

A B
C D

)(
F−

G−

)
,

(
A B
C D

)
∈ Sp(2n,R) .
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Symplectic transformations in N = 1 supergravity

I Under these symplectic transformations, the gauge kinetic function
transforms as:

if ′ = (C + Dif )(A + Bif )−1 .

I Symmetries of the action then correspond to transformations with B = 0. If
C 6= 0:

e−1L′1 = − 1
2 Im(F′−A

µν G′µν−A )

= − 1
2 Im(F−A

µν Gµν−A + F−A
µν (CTA)ABFBµν−) . (2.1)

For rigid symmetries, the last term represents a total derivative.
I In order to promote rigid symmetries to gauge symmetries, the FA

µν have to
transform in adjoint representation of the gauge group. For these
transformations, the symplectic matrix reads

S = − ΛCSC , SC =
(

fCB
A 0

CAB,C −fCA
B

)
,
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Symplectic transformations in N = 1 supergravity

I This reasoning suggests that we can allow for a more general
transformation rule for the gauge kinetic function:

δCfAB = fCA
DfBD + fCB

DfAD+iCAB,C .

I Example:
fAB = hABizi , δzi = iMi

CΛC ⇒ CAB,C = hABiMi
C ,

I Note that the kinetic terms of the vectors are no longer gauge invariant:

δgaugee−1L1 =
1
4

iCAB,CΛCFA
µνF̃µνB .

For rigid symmetries : total derivative. For gauge symmetries : no longer
gauge invariant.

I CAB,C is symmetric in its first two indices.
CAB,C = C(s)

AB,C + C(m)
AB,C

⊗ ⊕
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The kinetic terms of the vector multiplet

I Consider the full kinetic terms of the vector multiplet in N = 1 rigid
supersymmetry:

Sf =
∫

d4xd2θ fAB(X)WA
αWB

βε
αβ + c.c.

=
∫

d4x
[
− 1

4 Re fABFA
µνFµνB − 1

2 Re fABλ̄
A /DλB

+ 1
4 i Im fABFA

µνF̃µνB + 1
4 i(Dµ Im fAB)λ̄Aγ5γµλB

]
,

DµfAB = ∂µfAB − 2WC
µ fC(A

DfB)D .

I To covariantize with respect to the more general transformation rule of fAB

D̂µfAB = ∂µfAB − 2WC
µ fC(A

DfB)D−iWC
µCAB,C .

From now on we will consider the action Ŝf , where Dµ → D̂µ.
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The kinetic terms of the vector multiplet

I In this way, the gauge non-invariance only originates from one term:

δgaugee−1L1 =
1
4

iCAB,CΛCFA
µνF̃µνB .

I Note the relation between gauge non-invariance and supersymmetry
non-invariance:{

Qα,Q
†
α̇

}
= σµαα̇Dµ = σµαα̇(∂µ −WA

µδA) . (3.1)

I Indeed, the action is not invariant under supersymmetry either:

δ(ε)Ŝf =
∫

d4x Re
( 1

2 CAB,Cε
µνρσWC

µFA
νρε̄Rγσλ

B
L − 3

2 iC(AB,C)ε̄Rλ
C
R λ̄

A
Lλ

B
L

)
.

Note that this expression only depends on the fields of the vector multiplets.
I In the following we will attempt to construct an action that is invariant

under gauge and supersymmetry, by means of generalized Chern-Simons
terms and anomalies.
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δ(ε)Ŝf =
∫

d4x Re
( 1

2 CAB,Cε
µνρσWC

µFA
νρε̄Rγσλ

B
L − 3

2 iC(AB,C)ε̄Rλ
C
R λ̄

A
Lλ

B
L

)
.

Note that this expression only depends on the fields of the vector multiplets.
I In the following we will attempt to construct an action that is invariant

under gauge and supersymmetry, by means of generalized Chern-Simons
terms and anomalies.



Generalized Chern-Simons terms

I Generalized Chern-Simons terms are (for the general non-abelian case)

SCS =
∫

d4x 1
2 C(CS)

AB,Cε
µνρσ

( 1
3 WC

µWA
νFB

ρσ + 1
4 fDE

AWD
µWE

νWC
ρWB

σ

)
.

Proportional to a three-index tensor C(CS)
AB,C, not necessarily equal to CAB,C.

I We can put
C(CS)

(AB,C) = 0 ,

They thus correspond to .
I For semi-simple algebras, GCS terms do not bring anything new (de Wit,

Hull, Rocek). In that case, one can find a constant, real, symmetric matrix
ZAB, such that:

C(CS)
AB,C = 2fC(A

DZB)D ,

In this case, the GCS action can be reabsorbed in the original action Sf by
redefining fAB:

f ′AB = fAB + iZAB .
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Anomalies

I Anomalies indicate a non-invariance of the effective action Γ[Wµ]:

e−Γ[Wµ] =
∫
Dφ̄Dφe−S(Wµ,φ̄,φ) .

δ(Λ)Γ[W] = −
∫

d4x ΛA
(
Dµ

δΓ[W]
δWµ

)
A
≡
∫

d4x ΛAAA ,

I The anomaly satisfies the Wess-Zumino consistency conditions:

δ(Λ1)
(
ΛA

2AA
)
− δ(Λ2)

(
ΛA

1AA
)

= ΛB
1 ΛC

2 fBC
AAA .

I For instance, for an arbitrary non-abelian gauge group, the consistent form
of the anomaly is given by:

AA ∼ εµνρσ Tr
(

TA∂µ
(
Wν∂ρWσ + 1

2 WνWρWσ

) )
,
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(
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= ΛB
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2 fBC
AAA .

I For instance, for an arbitrary non-abelian gauge group, the consistent form
of the anomaly is given by:

AA ∼ εµνρσ Tr
(

TA∂µ
(
Wν∂ρWσ + 1

2 WνWρWσ

) )
,
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Anomalies

I Note that if Γ is non-invariant under gauge transformations, also its
supersymmetry variation is non-vanishing:

A = δΓ(W) = δ(Λ)Γ[W] + δ(ε)Γ[W] =
∫

d4x
(
ΛAAA + ε̄Aε

)
.

I A full cohomological analysis of anomalies in supergravity has been made
(Brandt):

AC = − 1
4 i
[
dABCFB

µν +
(
dABDfCE

B + 3
2 dABCfDE

B)WD
µWE

ν

]
F̃µνA ,

ε̄Aε = Re
[ 3

2 idABC ε̄Rλ
C
R λ̄

A
Lλ

B
L + idABCWC

ν F̃µνAε̄Lγµλ
B
R

+ 3
8 dABCfDE

AεµνρσWD
µWE

νWC
σ ε̄Lγρλ

B
R

]
.

I The coefficients dABC form a totally symmetric tensor, given in terms of
generators of the gauge group:

dABC ∼ Tr({TA,TB}TC) .
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Cancellation

I In order to achieve cancellation, we set:

C(CS)
AB,C = C(m)

AB,C = CAB,C − C(CS)
AB,C .

I Using this identification, the sum of Ŝf + SCS is still not gauge- and
supersymmetry-invariant. However:

δ(Λ)
(

Ŝf + SCS

)
= −

∫
d4x ΛAA(s)

A ,

δ(ε)
(

Ŝf + SCS

)
= −

∫
d4x ε̄A(s)

ε ,

where A(s) represents the expression for the anomaly with dABC → C(s)
AB,C.

I In other words, when

C(CS)
AB,C = C(m)

AB,C , C(s)
AB,C = dABC

gauge and supersymmetry invariance are restored.
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Supergravity and extended supersymmetry

I So far, we considered rigid supersymmetry. What about supergravity?
No extra GCS terms are needed to achieve cancellation.

I All extra contributions (e.g. gravitino contributions) that were not present
in susy variation for rigid supersymmetry, vanish without need of extra
terms.

I No new contributions to gauge non-invariance.
I In extended supersymmetry : Generalized Chern-Simons terms have been

considered, for restoring gauge and supersymmetry invariance.
I Note that in extended supersymmetry, one can show that:

C(AB,C) = 0 .

This is consistent with the fact that only N = 1 theories have chiral
fermions that lead to anomalies.
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Conclusions

I We considered gauge and supersymmetry invariance of matter coupled
N = 1 supergravity with Peccei-Quinn terms, generalized Chern-Simons
terms and anomalies.

I 1. Gauge non-invariance of PQ terms is parametrized by CAB,C = C(s)
AB,C + C(m)

AB,C.

2. GCS terms are defined by a tensor C(CS)
AB,C of mixed symmetry.

3. Anomalies are proportional to a symmetric tensor dABC.
Invariance is restored when

CAB,C = C(CS)
AB,C + dABC .

I Presence of symmetric part in CAB,C and of anomalies is different from
extended supersymmetry.

I Generalization to supergravity is straightforward.
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