Recent results in 4-dimensional non-perturbative string theory

Frank Saueressig

Institute for Theoretical Physics & Spinoza Institute Utrecht University

D. Robles-Llana,F. S., U. Theis, S. Vandoren, arXiv:0707:0838 [hep-th] F. S., S. Vandoren, JHEP 07 (2007) 018 D. Robles-Llana, M. Roček, F. S., U. Theis, S. Vandoren, PRL 98 (2007) 211602

> 2007 Europhysics Conference on high energy physics Manchester, July 20th, 2007

Non-perturbative effects in string theory

- source of mathematical insights for long time (e.g., mirror symmetry)
- recently: increasing role in string phenomenology
 - particle physics: generate "forbidden" couplings (neutrino masses)
 - moduli stabilization and flux vacua in type IIB strings

Non-perturbative effects in string theory

- source of mathematical insights for long time (e.g., mirror symmetry)
- recently: increasing role in string phenomenology
 - particle physics: generate "forbidden" couplings (neutrino masses)
 - moduli stabilization and flux vacua in type IIB strings

A positive cosmological constant a là KKLT

"class. fluxes + non-perturbative corrections + uplift = semirealistic physics"

Non-perturbative effects in string theory

- source of mathematical insights for long time (e.g., mirror symmetry)
- recently: increasing role in string phenomenology
 - particle physics: generate "forbidden" couplings (neutrino masses)
 - moduli stabilization and flux vacua in type IIB strings

A positive cosmological constant a là KKLT

"class. fluxes + non-perturbative corrections + uplift = semirealistic physics"

Non-perturbative corrections are far from understood!

Study in a "controlled" setup

Setup: Type II strings on Calabi-Yau threefolds

Consider type IIA/IIB string theory on ${\rm M}_4 \times {\rm CY}_3$

• Classical effective action: Compactify d = 10 type II supergravity

 \implies low energy physics: d = 4, N = 2 supergravity

 \implies special properties: symmetries (e.g. SL(2, \mathbb{Z}) in IIB)

Setup: Type II strings on Calabi-Yau threefolds

Consider type IIA/IIB string theory on ${\rm M}_4 \times {\rm CY}_3$

• Classical effective action: Compactify d = 10 type II supergravity

 \implies low energy physics: d = 4, N = 2 supergravity

 \implies special properties: symmetries (e.g. SL(2, \mathbb{Z}) in IIB)

• Quantum corrections:

Setup: Type II strings on Calabi-Yau threefolds

Consider type IIA/IIB string theory on ${\rm M}_4 \times {\rm CY}_3$

• Classical effective action: Compactify d = 10 type II supergravity

 \implies low energy physics: d = 4, N = 2 supergravity

 \implies special properties: symmetries (e.g. SL(2, \mathbb{Z}) in IIB)

• Quantum corrections:

Worldsheet conformal field theory α^\prime

 Perturbative world sheet corrections

➤ World sheet instantons

Exploiting supersymmetry: Basic facts about N = 2 **supergravity**

Basic building blocks are supermultiplets

- supergravity multiplet: $e_{\mu}{}^{a}$, A_{μ}
- vector multiplets (VM): X, \bar{X} , A_{μ}
- hypermultiplets (HM): q^1 , q^2 , q^3 , q^4

Exploiting supersymmetry: Basic facts about N = 2 **supergravity**

Basic building blocks are supermultiplets

- supergravity multiplet: $e_{\mu}{}^{a}$, A_{μ}
- vector multiplets (VM): X, \bar{X} , A_{μ}
- hypermultiplets (HM): q^1 , q^2 , q^3 , q^4

N=2 supersymmetry \implies factorization of scalar manifolds

$$\mathcal{M}=\mathcal{M}_{\rm VM}\otimes\mathcal{M}_{\rm HM}$$

- profound consequences for quantum corrections
 - $\circ \alpha'$ corrections: factor containing volume of CY₃
 - g_s corrections: factor containing dilaton $\tau_2 = g_s^{-1}$

Exploiting supersymmetry: Basic facts about N = 2 **supergravity**

Basic building blocks are supermultiplets

- supergravity multiplet: $e_{\mu}{}^{a}$, A_{μ}
- vector multiplets (VM): X, \bar{X} , A_{μ}
- hypermultiplets (HM): q^1 , q^2 , q^3 , q^4

N = 2 supersymmetry \implies factorization of scalar manifolds

$$\mathcal{M}=\mathcal{M}_{\rm VM}\otimes\mathcal{M}_{\rm HM}$$

profound consequences for quantum corrections

 $\circ \alpha'$ corrections: factor containing volume of CY₃

• g_s corrections: factor containing dilaton $\tau_2 = g_s^{-1}$

Vector multiplet coulings:

- completely determined by holomorphic prepotential F(X)
- kinetic terms of scalars given by Kähler potential $K = i(\bar{X}^{\Lambda} F_{\Lambda} X^{\Lambda} \bar{F}_{\Lambda})$

Generically: hypermultiplet sector is very complicated

- simplification: q^i with suitable shift symmetries
 - dualize scalar $q^i \longrightarrow$ second rank tensor $E^i_{\mu\nu}$
 - multiplets: hypermultiplet \longrightarrow tensor multiplet (TM) $q^1, q^2, q^3, q^4 \longrightarrow v, \bar{v}, x, E_{\mu\nu}$
- brings in new tools:
 - off-shell projective superspace description
 - superconformal calculus linking this to Poincaré supergravity

Generically: hypermultiplet sector is very complicated

- simplification: q^i with suitable shift symmetries
 - dualize scalar $q^i \longrightarrow$ second rank tensor $E^i_{\mu\nu}$
 - multiplets: hypermultiplet \longrightarrow tensor multiplet (TM) $q^1, q^2, q^3, q^4 \longrightarrow v, \bar{v}, x, E_{\mu\nu}$
- brings in new tools:
 - off-shell projective superspace description
 - superconformal calculus linking this to Poincaré supergravity
- HM couplings determined by single function \mathcal{L} or χ

 \mathcal{L}, χ for HM have similar role as F, K for VM

• Basic building block: N = 2 tensor superfield

$$\eta^I = \frac{v^I}{\zeta} + x^I - \bar{v}^I \zeta$$

• construct superspace density \mathcal{L} (of conformal tensor multiplets)

$$\mathcal{L} = \operatorname{Im} \oint_{\mathcal{C}} \frac{d\zeta}{2\pi i \zeta} H(\eta^{I})$$

 \circ restricted to scalars \longrightarrow function $\mathcal{L}(v, \overline{v}, x)$ encoding HM sector

• Basic building block: N = 2 tensor superfield

$$\eta^I = \frac{v^I}{\zeta} + x^I - \bar{v}^I \zeta$$

• construct superspace density \mathcal{L} (of conformal tensor multiplets)

$$\mathcal{L} = \operatorname{Im} \oint_{\mathcal{C}} \frac{d\zeta}{2\pi i \zeta} H(\eta^{I})$$

- \circ restricted to scalars \longrightarrow function $\mathcal{L}(v, \overline{v}, x)$ encoding HM sector
- Defines a tensor potential χ :

$$\chi = -\mathcal{L} + x^I \mathcal{L}_{x^I}$$

- \circ χ also specifies hypermultiplet sector completely
- Symmetries of the Poincaré theory \iff invariances of χ

fields in effective action come from two sources

- metric: Kähler and complex structure moduli = shape, size of internal space
- reduction of other *p*-form fields

fields in effective action come from two sources

- metric: Kähler and complex structure moduli = shape, size of internal space
- reduction of other *p*-form fields

fields in effective action come from two sources

- metric: Kähler and complex structure moduli = shape, size of internal space
- reduction of other *p*-form fields

IIA/IIB dilaton is in the hypermultiplet sector

determine g_s corrections \iff study \mathcal{M}_{HM}

- type IIB: tensor multiplets appear naturally
- type IIA: reduction of p-form gauge-fields gives shift symmetries in B^{Λ}

 $\Longrightarrow B^{\Lambda}$ can be dualized to tensors E_2^{Λ}

 \implies gain: 1DTM + $h^{1,2}$ TM

- type IIB: tensor multiplets appear naturally
- type IIA: reduction of p-form gauge-fields gives shift symmetries in B^{Λ}

 $\Longrightarrow B^{\Lambda}$ can be dualized to tensors E_2^{Λ}

 \implies gain: 1DTM + $h^{1,2}$ TM

1DTM + $h^{1,2}$ TM = field content for off-shell description (\mathcal{L}, χ)

Non-perturbative corrections from D-branes

Dp-branes as higher dimensional objects with p + 1 dimensions

- IIA: p even: D0, D2 (membranes), D4, ...
- IIB: p odd: D(-1) (point), D1 (D-string), D3, D5, ...

Non-perturbative corrections from D-branes

Dp-branes as higher dimensional objects with p + 1 dimensions

- IIA: p even: D0, D2 (membranes), D4, ...
- IIB: p odd: D(-1) (point), D1 (D-string), D3, D5, ...

Instanton configurations in type IIB

Instanton corrections from D-branes

Dp-branes as higher dimensional objects with p + 1 dimensions

- IIA: p even: D0, D2 (membranes), D4, ...
- IIB: p odd: D(-1) (point), D1 (D-string), D3, D5, ...

Instanton configurations in type IIB

Instantons yield exponentially suppressed corrections to the effective action:

Example: D(-1)-instanton contributions $\propto e^{-S_{D(-1)}}$

$$S_{\mathrm{D}(-1)} = 2\pi\tau_2 + 2\pi i\tau_1$$

Computing instanton corrections

- Direct computation rather hopeless:
 - already very complicated in quantum field theory (e.g., YM-theories)
 - no non-perturbative formulation for string theory

Computing instanton corrections

- Direct computation rather hopeless:
 - already very complicated in quantum field theory (e.g., YM-theories)
 - no non-perturbative formulation for string theory
- Key idea: indirect computation using dualities of string theory:
 - duality: two string theories (or sectors) encode the same physics
 - find a sector which is classically exact
 - use duality maps to learn about quantum corrections

Dualities of type II string theory

- mirror symmetry (non-perturbative)
 - for *X* and *Y* mirror pair of Calabi-Yau manifolds

LEEA for type IIA/X \simeq LEEA for type IIB/Y

Dualities of type II string theory

- mirror symmetry (non-perturbative)
 o for X and Y mirror pair of Calabi-Yau manifolds
 LEEA for type IIA/X ~ LEEA for type IIB/Y
- T-duality (c-map) (string tree-level)
 - IIA/IIB string theory on S^1 (swap winding \Leftrightarrow momentum modes): type IIA/ $S^1_R \simeq$ type IIB/ $S^1_{1/R}$

• LEEA:

type IIA/X vector multiplets \iff type IIB/X hypermultiples

Dualities of type II string theory

- mirror symmetry (non-perturbative) • for X and Y mirror pair of Calabi-Yau manifolds LEEA for type IIA/X \simeq LEEA for type IIB/Y
- T-duality (c-map) (string tree-level)
 - IIA/IIB string theory on S^1 (swap winding \Leftrightarrow momentum modes): type IIA/ $S_R^1 \simeq$ type IIB/ $S_{1/R}^1$
 - LEEA:

type IIA/X vector multiplets \iff type IIB/X hypermultiples

• SL(2,Z)-invariance (non-perturbative)

• type IIB string has invariance:

 $\tau_1 \rightarrow 1/\tau_1$ and $\tau_2 \rightarrow \tau_2 + 1$ (+ transformation of tensors) relates e.g. fundamental strings and D-strings $\rightarrow (p,q)$ -strings

• LEEA:

invariant under transformations inherited by 4-dimensional fields

Building a duality chain

Duality cascade I: type IIB VM sector

Starting point: IIB vector multiplets (classically exact):

- fixed by prepotential $F_{VM}^{IIB}(X)$
- X related to the complex structure moduli z^a
- $F_{\rm VM}^{\rm IIB}(X)$ determined by period integrals of hol. 3-form Ω

Duality cascade II: IIA VM sector via mirror symmetry

(P. Candelas, et. al., Nucl. Phys. B359 (1991) 21)

The mirror map:

- complex structure moduli X^{cs} of $CY_3 \simeq K$ ähler moduli X^{Kahler} of mirror CY_3
- Exist canonical coordinates in which $F_{VM}^{IIB}(X) = F_{VM}^{IIA}(X)$

Duality cascade II: IIA VM sector via mirror symmetry

(P. Candelas, et. al., Nucl. Phys. B359 (1991) 21)

The mirror map:

- complex structure moduli X^{cs} of $CY_3 \simeq K$ ähler moduli X^{Kahler} of mirror CY_3
- Exist canonical coordinates in which $F_{VM}^{IIB}(X) = F_{VM}^{IIA}(X)$

Interpretation of $F_{VM}^{IIA}(X) = F_{cl}(X) + F_{pt}(X) + F_{ws}(X)$:

$$F_{\rm cl}(X) = \frac{1}{3!} \kappa_{abc} \frac{X^a X^b X^c}{X^1}$$
$$F_{\rm pt}(X) = \frac{i \zeta(3)}{2(2\pi)^3} \chi_E (X^1)^2$$
$$F_{\rm ws}(X) = -\frac{i}{(2\pi)^3} (X^1)^2 \sum_{k_a} n_{k_a} \operatorname{Li}_3 \left(e^{2\pi i k_a X^a / X^1} \right)$$

- F_{cl} classical part (triple intersection numbers κ_{abc})
- $F_{\rm pt}$ and $F_{\rm ws}$ are perturbative and non-perturbative α' corrections (Euler number χ_E , Gopakumar-Vafa invariants n_{k_a})

Duality cascade III: IIB HM sector in string perturbation theory

(M. Roček, C. Vafa, S. Vandoren, hep-th/0512206)

(D. Robles-Llana, F.S., S. Vandoren, hep-th/0602164)

perturbative IIB HM sector (classical c-map + 1-loop correction):

$$\mathcal{L}(v,\bar{v},x) = \operatorname{Im} \oint_{\mathcal{C}} \frac{\mathrm{d}\zeta}{2\pi i \zeta} \left[\frac{F(\eta^{\Lambda})}{\eta^0} + \frac{i \chi_E}{(2\pi)^3} 2\zeta(2) \eta^0 \ln(\eta^0) \right]$$

- $F(\cdot)$ prepotential of dual VM sector
- η^0 conformal compensator (additional TM)
- contour C taken "zero" of $\zeta \eta^0$

Duality cascade III: IIB HM sector in string perturbation theory

(M. Roček, C. Vafa, S. Vandoren, hep-th/0512206)

(D. Robles-Llana, F.S., S. Vandoren, hep-th/0602164)

perturbative IIB HM sector (classical c-map + 1-loop correction):

$$\mathcal{L}(v,\bar{v},x) = \operatorname{Im} \oint_{\mathcal{C}} \frac{\mathrm{d}\zeta}{2\pi i \zeta} \left[\frac{F(\eta^{\Lambda})}{\eta^0} + \frac{i \chi_E}{(2\pi)^3} 2\zeta(2) \eta^0 \ln(\eta^0) \right]$$

- $F(\cdot)$ prepotential of dual VM sector
- η^0 conformal compensator (additional TM)
- contour C taken "zero" of $\zeta \eta^0$

Determine χ using physical fields ($z^a = b^a + it^a$, $t^a = K$ ähler modulus)

$$\chi_{cl} = 4 r^0 \tau_2^2 \frac{1}{3!} \kappa_{abc} t^a t^b t^c$$

$$\chi_{pt} = \frac{1}{(2\pi)^3} r^0 \chi_E \left[\zeta(3) \tau_2^2 + 2\zeta(2) \right]$$

$$\chi_{ws} = -\frac{r^0 \tau_2^2}{(2\pi)^3} \sum_{k_a} n_{k_a} \left[\text{Li}_3(e^{2\pi i k_a z^a}) + 2\pi k_a t^a \text{Li}_2(e^{2\pi i k_a z^a}) + c.c. \right]$$

Duality cascade IV: SL(2, \mathbb{Z}) invariance of IIB LEEA

4-dimensional fields transform under $SL(2,\mathbb{Z})$ of type IIB string

$$\tau \mapsto \frac{a\tau + b}{c\tau + d}, \ t^a \mapsto t^a |c\tau + d|, \ b^a \mapsto d \, b^a + c \, c^a, \ c^a \mapsto b \, b^a + a \, c^a; \ (r^0 \mapsto r^0 |c\tau + d|)$$

Basic idea: IIB string has non-perturbative SL(2, \mathbb{Z})-invariance

- observation: α', g_s -corrections break SL(2, \mathbb{Z})-invariance of classical LEEA
- \implies restore SL(2, \mathbb{Z})-invariance of LEEA
- \iff complete χ to a modular invariant function

Duality cascade IV: SL(2, \mathbb{Z}) invariance of IIB LEEA

4-dimensional fields transform under $SL(2,\mathbb{Z})$ of type IIB string

$$\tau \mapsto \frac{a\tau + b}{c\tau + d}, \ t^a \mapsto t^a |c\tau + d|, \ b^a \mapsto d \, b^a + c \, c^a, \ c^a \mapsto b \, b^a + a \, c^a; \ (r^0 \mapsto r^0 |c\tau + d|)$$

Basic idea: IIB string has non-perturbative SL(2, \mathbb{Z})-invariance

- observation: α', g_s -corrections break SL(2, \mathbb{Z})-invariance of classical LEEA
- \implies restore SL(2, \mathbb{Z})-invariance of LEEA
- \iff complete χ to a modular invariant function

Classical contribution:

$$\chi_{\rm cl} = \frac{4}{3!} \left(r^0 \sqrt{\tau_2} \right) \kappa_{abc} \left(\sqrt{\tau_2} t^a \right) \left(\sqrt{\tau_2} t^b \right) \left(\sqrt{\tau_2} t^b \right)$$

- each bracket is an $SL(2, \mathbb{Z})$ invariant
- $\implies \chi_{cl}$ is modular invariant!
- reflects SL(2, \mathbb{Z}) invariance of the classical LEEA

Duality cascade IV: Restoring SL(2, \mathbb{Z}) invariance of χ_{pt}

• Perturbative contributions are NOT modular invariant!

$$\chi_{\rm pt} = \frac{1}{2(2\pi)^3} r^0 \sqrt{\tau_2} \chi_E \left[\underbrace{2\zeta(3)\tau_2^{3/2}}_{\rm pert.\alpha'} + \underbrace{4\zeta(2)\tau_2^{-1/2}}_{\rm pert.g_s}\right]$$

Duality cascade IV: Restoring SL(2, \mathbb{Z}) invariance of χ_{pt}

Perturbative contributions are NOT modular invariant!

$$\chi_{\rm pt} = \frac{1}{2(2\pi)^3} r^0 \sqrt{\tau_2} \chi_E \left[\underbrace{2\zeta(3) \tau_2^{3/2}}_{\text{pert.}\alpha'} + \underbrace{4\zeta(2) \tau_2^{-1/2}}_{\text{pert.}g_s} \right]$$

compare to non-holomorphic Eisenstein series

$$Z_{3/2} = 2\zeta(3)\,\tau_2^{3/2} + 4\zeta(2)\,\tau_2^{-1/2} + 8\pi\,\sqrt{\tau_2}\,\sum_{m\neq 0,n>0} \left|\frac{m}{n}\right| e^{2\pi i m n \tau_1}\,K_1(2\pi |mn|\tau_2)$$

Sum over images provides modular completion:

$$\chi_{(-1)} = \frac{1}{2(2\pi)^3} r^0 \sqrt{\tau_2} \chi_E Z_{3/2}(\tau, \bar{\tau})$$

- First two terms: perturbative α' and g_s corrections
- Sum: D(-1) instanton contributions

Duality cascade IV: Restoring SL(2, \mathbb{Z}) invariance of χ_{ws}

• Worldsheet-instanton contribution also NOT modular invariant

$$\chi_{\rm ws} = -\frac{r^0 \,\tau_2^2}{(2\pi)^3} \,\sum_{k_a} n_{k_a} \operatorname{Re} \left[\operatorname{Li}_3 \left(e^{2\pi i k_a z^a} \right) + 2\pi k_a t^a \operatorname{Li}_2 \left(e^{2\pi i k_a z^a} \right) \right]$$

• SL(2, \mathbb{Z}) multiplet: fundamental string + D(1)-string + their bound states

Duality cascade IV: Restoring SL(2, \mathbb{Z}) invariance of χ_{ws}

• Worldsheet-instanton contribution also NOT modular invariant

$$\chi_{\rm ws} = -\frac{r^0 \,\tau_2^2}{(2\pi)^3} \,\sum_{k_a} n_{k_a} \operatorname{Re} \left[\operatorname{Li}_3 \left(e^{2\pi i k_a z^a} \right) + 2\pi k_a t^a \operatorname{Li}_2 \left(e^{2\pi i k_a z^a} \right) \right]$$

• SL(2, \mathbb{Z}) multiplet: fundamental string + D(1)-string + their bound states

Modular completion using sum over images:

$$\chi_{(1)} = -\frac{|r^0|\sqrt{\tau_2}}{(2\pi)^3} \sum_{k_a} n_{k_a} \sum_{m,n'} \frac{\tau_2^{3/2}}{|m\tau + n|^3} (1 + 2\pi |m\tau + n| k_a t^a) e^{-S_{m,n}}.$$

 $S_{m,n}$ is the instanton action for (p, q)-string

$$S_{m,n} = 2\pi \left(|m\tau + n| \, k_a \, t^a - i \, k_a \, (n \, b^a + m \, c^a) \right)$$

Duality cascade V: A-type D2-instantons from mirror symmetry

Mirror map in the hypermultiplet sector:

$$\phi_{\text{IIA}} = \phi_{\text{IIB}}, \ A^1 = \tau_1, \ A^a = -(c^a - \tau_1 b^a), \ z^a_{\text{IIA}} = z^a_{\text{IIB}}$$

• map: IIB D(-1) + D1-instantons \simeq (A-type) D2-instantons in IIA

Duality cascade V: A-type D2-instantons from mirror symmetry

Mirror map in the hypermultiplet sector:

$$\phi_{\text{IIA}} = \phi_{\text{IIB}}, \ A^1 = \tau_1, \ A^a = -(c^a - \tau_1 b^a), \ z^a_{\text{IIA}} = z^a_{\text{IIB}}$$

• map: IIB D(-1) + D1-instantons \simeq (A-type) D2-instantons in IIA

IIB HM	SL(2, \mathbb{Z})-invariant	IIA HM	composed from IIB terms
$\chi_{ m cl}$	$= \chi_{cl}$	$\chi_{ m tree}$	$= \chi_{\rm cl} + \chi_{\rm ws-pert} + \chi_{\rm ws-inst}$
$\chi_{(-1)}$	$= \chi_{\rm ws-pert} + \chi_{\rm loop} + \chi_{D(-1)}$	$\chi_{ m loop}$	= χ_{loop}
$\chi_{(1)}$	= $\chi_{\rm ws-inst} + \chi_{\rm D1}$	$\chi_{ m A-D2}$	$= \chi_{\mathrm{D}(-1)} + \chi_{\mathrm{D}1}$

Duality cascade V: A-type D2-instantons from mirror symmetry

Mirror map in the hypermultiplet sector:

$$\phi_{\text{IIA}} = \phi_{\text{IIB}}, \ A^1 = \tau_1, \ A^a = -(c^a - \tau_1 b^a), \ z^a_{\text{IIA}} = z^a_{\text{IIB}}$$

• map: IIB D(-1) + D1-instantons \simeq (A-type) D2-instantons in IIA

IIB HM	SL(2, \mathbb{Z})-invariant	IIA HM	composed from IIB terms
$\chi_{ m cl}$	= $\chi_{\rm cl}$	$\chi_{ m tree}$	= $\chi_{\rm cl} + \chi_{\rm ws-pert} + \chi_{\rm ws-inst}$
$\chi_{(-1)}$	$= \chi_{\rm ws-pert} + \chi_{\rm loop} + \chi_{D(-1)}$	$\chi_{ m loop}$	= χ_{loop}
$\chi_{(1)}$	= $\chi_{\rm ws-inst} + \chi_{\rm D1}$	$\chi_{\rm A-D2}$	$= \chi_{\mathrm{D}(-1)} + \chi_{\mathrm{D}1}$

• A-type D2-instanton contribution

$$\chi_{\rm A-D2} = -\frac{r^0 \tau_2}{2\pi^2} \sum_{k_{\Lambda}} n_{k_{\Lambda}} \sum_{m \neq 0} \frac{1}{|m|} |k_{\Lambda} z^{\Lambda}| K_1 \left(2\pi \tau_2 |m k_{\Lambda} z^{\Lambda}|\right) e^{-2\pi i m k_{\Lambda} A^{\Lambda}}$$

$$k_{\Lambda} = \{n, k_a\}, \quad n_{k_{\Lambda}} = \{-\frac{\chi_E}{2}, n_{k_a}\}, \quad z^{\Lambda} = \{1, z^a\}, \quad A^{\Lambda} = \{A^1, A^a\}$$

Summary

Type II strings compactified on Calabi-Yau threefolds:

- hypermultiplet sector receives corrections from Euclidean D-branes
 - \circ corrections encoded in functions \mathcal{L}, χ
- determined and sumed up classes of instanton corrections to all others in g_s
 - D(-1), D1-instanton corrections in IIB
 - A-type D2-instanton corrections in IIA

Summary and Outlook

Type II strings compactified Calabi-Yau threefolds:

• LEEA receives instanton corrections in the hypermultiplet sector

 \circ $\mathcal{N}=2$ hypermultiplet sector determined by functions \mathcal{L},χ

• determined classes of instanton contributions to all others in g_s

• D(-1), D1-instanton corrections in IIB

A-type D2-instanton corrections in IIA

Outlook:

- Consequences for moduli stabilization and flux compactifications?
- Include other instantons classes (B-D2, NS5-branes)?

Duality chain for the LEEA of type II strings on CY₃

