Geodesic motion, power-law cosmologies and pseudo-susy

Thomas Van Riet (R.U. Groningen, The Netherlands)

In collaboration with :

- Wissam Chemissany
- André Ploegh

based on arXiv:0704.1653

related to earlier work with J. Rosseel and D. Westra [hep-th/0610143]

Overview

- 1. Motivation: branes and moduli
- 2. Free scalars and time-dependent Einstein solutions
- 3. Massive scalars and pseudo supersymmetry
- 4. Outlook

D-branes, black holes, instantons and wormholes in string theory?

- \rightarrow first in supergravity
- \rightarrow this talk is pedagogical: mainly gravity...

Literature on branes and geodesics: Breitenlohner, Gibbons, Maison '88; Gal'tsov, Rytchkov '98; Cremmer, Lavrinenko, Lu, Pope, Stelle, Tran '98; Bergshoeff, Collinucci, Gran, Roest, Vandoren '04; Gunaydin, Neitzke, Pioline, Waldron '05; Polchinski,....; Fré, Gili, Gargiulo, Sorin, Rulik, Trigiante '03; Karthauser, Saffin '06; Rosseel, VR, Westra '06; Chemissany, Ploegh, VR '07; Arkani-Hamed, Orgera, Polchinski '07;...

Consider p-branes charged electrically under A_{p+1} or magnetically under A_{D-p-3} :

- Timelike p-branes: $ds_D^2 = e^{2A(r)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + e^{2B(r)} (dr^2 + r^2 d\Omega_{D-p-2}^2).$
- $\textbf{Spacelike p-branes: } ds_D^2 = e^{2A(t)} \delta_{\mu\nu} dx^{\mu} dx^{\nu} + e^{2B(t)} (-dt^2 + t^2 d\Sigma_{D-p-2}^2).$

Special cases are

- 1. <u>domain walls</u> = timelike (D-2)-brane,
- 2. FLRW-cosmologies = spacelike (D-2)-brane,
- 3. <u>instantons</u> = Euclidean (-1)-brane [IIB D-instanton]
- 4. (D-3)-branes [IIB 7-branes]

$$\mathcal{L} = \sqrt{|g|} \left(\mathcal{R} - \frac{1}{2} G_{ij} \partial \Phi^i \partial \Phi^j - V(\Phi) \right)$$
(1)

Apart from the (D-3)-branes, solutions depend on one parameter

$$\mathrm{d} s_D^2 = \pm f(r)^2 \mathrm{d} r^2 + g(r)^2 \mathrm{d} s_{D-1}^2 \,, \qquad \Phi^i(r) \,. \tag{2}$$

Such solutions can be identified with curves $\Phi^{i}(r)$ on the scalar manifold.

What about the other brane-type solutions? \rightarrow dimensionally reduce over p + 1-dimensional <u>worldvolume</u> (Killing directions):

- Timelike p-brane in *D* dimensions \rightarrow Euclidean "instanton" solution in *D p* 1 dimensions. (e.g. the black hole-instanton correspondence)
- Spacelike p-brane in D dimensions \rightarrow cosmological solution in D p 1 dimensions.

 $V = 0 \quad (\dots)$

REVERSED REASONING: Reduce over transversal space

- Timelike p-brane in *D* dimensions \rightarrow domain wall in p + 2 dimensions (e.g. DW/QFT correspondence).
- Spacelike p-brane in D dimensions \rightarrow Cosmology in p + 2 dimensions (e.g. do we live on a S2-brane?).

 $V \neq 0$ (...)

Al brane-type solutions have description in terms of curves $\Phi^i(r)$ on a scalar manifold.

When reduction over worldvolume is considered: $V = 0 \rightarrow$ **geodesic motion** on the scalar manifold. In terms of an *affine* parameter $\rho(r)$:

$$\Phi''^{i} + \Gamma^{i}_{jk} \Phi'^{j} \Phi'^{k} = 0, \qquad \mathcal{R}_{rr} = \frac{1}{2} ||v^{2}||g^{2-2D} f^{2}$$
(3)

Affine velocity $||v^2||$ is constant $||v^2|| = G_{ij} \Phi'^i \Phi'^j$. If G_{ij} is indefinite then

- $||v||^2 > 0$ spacelike geodesics
- $||v||^2 = 0$ lightlike geodesics
- $||v||^2 < 0$ timelike geodesics

Program:

- 1. Dimensional reduce
- 2. Solve geodesic equations
- 3. Uplift the solutions

Find geodesic curves on *which spaces*? Consider *maximal supergravity* in D = 10, 11 and their corresponding reductions over timelike and spacelike tori:

	Minkowskian	Euclidean
D = 10	O(1,1)	O(1,1)
D = 9	$\frac{\mathrm{GL}(2,\mathbb{R})}{O(2)}$	$\frac{\operatorname{GL}(2, R)}{O(1, 1)}$
D=8	$\frac{\mathrm{SL}(3,\mathbb{R})\times\mathrm{SL}(2,\mathbb{R})}{O(3)\times O(2)}$	$\frac{\mathrm{SL}(3,\mathbb{R})\times\mathrm{SL}(2,\mathbb{R})}{O(2,1)\times O(1,1)}$
D = 7	$\frac{\mathrm{SL}(5,\mathbb{R})}{O(5)}$	$\frac{\mathrm{SL}(5,\mathbb{R})}{O(3,2)}$
D = 6	$\frac{O(5,5)}{O(5) \times O(5)}$	$\frac{O(5,5)}{O(5,C)}$
D = 5	$\frac{E_{6(+6)}}{USp(8)}$	$rac{E_{6(+6)}}{USp(4,4)}$
D=4	$\frac{E_{7(+7)}}{SU(8)}$	$\frac{E_{7(+7)}}{SU^*(8)}$
D = 3	$\frac{E_{8(+8)}}{SO(16)}$	$\frac{E_{8(+8)}}{SO^{*}(16)}$

Simplest example moduli space: torus-reduction of pure gravity

- 1. $\operatorname{GL}(n, \mathbb{R}) / \operatorname{SO}(n)$ for spacelike reductions.
- 2. $\operatorname{GL}(n, \mathbb{R}) / \operatorname{SO}(n-1, 1)$ for timelike reductions.

$$\mathrm{d}s_{D+n}^2 = \mathrm{e}^{2\alpha\varphi}\mathrm{d}s_D^2 + \mathrm{e}^{2\beta\varphi}e^n \otimes e_n \,. \tag{4}$$

• φ is breathing mode, controls overall volume.

• e^n is vielbein on n-torus: $e^n = L^n_a(\underline{x}) dy^a$ and since overall volume is constant detL=1. Thus internal space

$$ds_n^2 = \mathcal{M}_{ab} dy^a dy^b , \qquad \mathcal{M}_{ab} = L_a^n L_{nb} .$$
(5)

- Local SO(*n*) $L \to LO(y)$ leaves $\mathcal{M}_{ab} dy^a dy^b$ invariant.
- Rigid SL(n, \mathbb{R}) $L \to \Omega L$ preserves Ansatz: $\mathcal{M}_{ab} dy'^a dy'^b$ where $y' = \Omega y$.

Thus L is coset representative of $SL(n, \mathbb{R})/SO(n)$, the moduli group of the n-torus.

$$\sqrt{-g_{D+n}}\mathcal{R}_{D+n} \rightarrow \sqrt{-g_D}\left\{\mathcal{R}_D + \frac{1}{4}\operatorname{Tr}\partial\mathcal{M}\partial\mathcal{M}^{-1} - \frac{1}{2}\partial\varphi\partial\varphi\right\}$$
(6)

Time-dependent Einstein solutions

Geodesics on $SL(n, \mathbb{R}) / SO(n)$?

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\mathcal{M}^{-1} \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{M} \right] = 0 \,. \tag{7}$$

Integrable problem! $\rightarrow \mathcal{M}^{-1} \frac{d}{dt} \mathcal{M} = Q$. And thus

$$\mathcal{M}(t) = \mathcal{M}(0) \mathbf{e}^{Qt} \,. \tag{8}$$

For geodesics through the origin $\mathcal{M}(0) = \mathbb{1}$ we have a solution if

$$\operatorname{Tr} Q = 0, \qquad Q^T = Q. \tag{9}$$

Isometry maps geodesic \rightarrow new geodesic and Q transforms in the adjoint: $Q \rightarrow \Omega Q \Omega^{-1}$. For geodesics through origin $\Omega \in SO(n) \subset SL(n, \mathbb{R})$ and Q can be diagonalized! This is a straight line $\vec{\phi} = \vec{v}t$.

Geodesics not true origin can be obtained via a non-compact $SL(n, \mathbb{R})$ -transformation.

All geodesics on $SL(n, \mathbb{R})/SO(n)$ can be obtained via an isometry transformation of a straight line.

This result extends to all coset spaces that are maximally non-compact [Chemissany, Ploegh, VR '07].

Time-dependent Einstein solutions

Uplift the general cosmological solution to D + n-dimensional vacuum solution.

$$\varphi = a t + b, \qquad \mathcal{M}(t) = \Omega D(t) \Omega^T$$
(10)

where D(t) is diagonal and represents the trivial straight line solution. The Ω 's can be absorbed as a coordinate transformation on the torus coordinates $dy' = \Omega dy$. Result is the <u>Kasner solution</u>:

$$ds^2 = -t^{2p_0} dt^2 + \sum_i t^{2p_i} dz_i^2 , \qquad (11)$$

$$p_0 + 1 = \sum_i p_i$$
, $(p_0 + 1)^2 = \sum_i p_i^2$. (12)

- What if the D-dimensional FLRW Ansatz has $k \neq 0$? Kasner becomes a generalization of (flux-less) S-brane solutions for k = -1.
- This was only an exercise, should extend to supergravity. Uplift a bit more involved. For the result (but with a different technique), see [Fre, Gili, Gargiulo, Sorin, Rulik, Trigiante '03].

Non-zero potential?

- If $V \neq 0$ geodesic motion is deformed, but not always [Karthauser, Saffin '06]
- Related to pseudo-supersymmetry [Sonner, Townsend '07, Chemissany, Ploegh, VR '07].

PSEUDO-SUSY?

Pseudo-supersymmetry and geodesics

=First-order formalism for cosmological solutions based on Domain wall/Cosmology correspondence [Skenderis, Townsend '06].

$$ds_D^2 = g(y)^2 ds_{D-1}^2 + \epsilon f(y)^2 dy^2 , \quad ds_{D-1}^2 = (\eta_\epsilon)_{ab} dx^a dx^b , \tag{13}$$

where $\epsilon = \pm 1$ and $\eta_{\epsilon} = \text{diag}(-\epsilon, 1, \dots, 1)$. If $V(\Phi)$ can be written in terms of another function $W(\Phi)$ as follows

$$V = \epsilon \left\{ \frac{1}{2} G^{ij} \partial_i W \partial_j W - \frac{D-1}{4(D-2)} W^2 \right\},\tag{14}$$

the action can be written as "a sum of squares" (plus a boundary term) :

$$S = \epsilon \int \mathrm{d}y \, f g^{D-1} \Big\{ \frac{(D-1)}{4(D-2)} \Big[W - 2(D-2) \frac{\dot{g}}{fg} \Big]^2 - \frac{1}{2} || \frac{\dot{\Phi}^i}{f} + G^{ij} \partial_j W ||^2 \Big\}$$
(15)

First-order (pseudo)-BPS equations:

$$W = 2(D-2)\frac{\dot{g}}{fg}, \qquad \frac{\dot{\Phi}^i}{f} + G^{ij}\partial_j W = 0.$$
(16)

Pseudo-supersymmetry and geodesics

For domain-walls corresponds to real supersymmetry. Applications of pseudo-susy? \rightarrow power-law cosmologies (scaling) :

$$a(\tau) \sim \tau^P \,. \tag{17}$$

Often dynamical attractors, cosmological "vacua".

- It was shown that for power-law solutions the scalar flow $\dot{\Phi}^i$ is a **Killing Flow** [Tolley, Wesley '07].
- Assume flow is pseudo-BPS, then consider $\ddot{\Phi}^i + \Gamma^i_{jk} \dot{\Phi}^j \dot{\Phi}^k = \nabla_{\dot{\Phi}} \dot{\Phi}^i$, in components:

$$\nabla_{j}\dot{\Phi_{i}} = \nabla_{[j}\dot{\Phi_{i}}] + \nabla_{(j}\dot{\Phi_{i}}) = \nabla_{[j}\dot{\Phi_{i}}] = \nabla_{[j}\nabla_{i]}W = 0.$$
(18)

Therefore, pseudo BPS powerlaw solutions describe a geodesic motion altough there is a non-zero potential. (locally vice versa)

Summary & Outlook

Summary

- 1. There is a correspondence between brane solutions and geodesic curves using dimensional reduction.
- 2. The geodesic EOM can be solved using group theory. This was shown in a pedagogical example: time-dependent Einstein solutions.
- 3. We presented the multi-scalar pseudo-BPS equations.
- 4. When the scalars are massive a geodesic motion can occur: Power-law cosmological solutions that are pseudo-BPS have this property.

Future

- 1. Geodesic curves on cosets with non-compact isotropy and instantons [Bergshoeff, Chemissany, Ploegh, Van Riet, to appear]
- 2. Pseudo-supersymmetry extended to *p*-forms. Pseudo-susy of S-branes?
- 3. Pseudo-supersymmetry in holography?