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Approach

D-branes, black holes, instantons and wormholes in string
theory?

→ first in supergravity

→ this talk is pedagogical: mainly gravity...

Literature on branes and geodesics: Breitenlohner, Gibbons, Maison ’88;
Gal’tsov, Rytchkov ’98; Cremmer, Lavrinenko, Lu, Pope, Stelle, Tran ’98; Bergshoeff, Collinucci,
Gran, Roest, Vandoren ’04; Gunaydin, Neitzke, Pioline, Waldron ’05; Polchinski,.....; Fré, Gili,
Gargiulo, Sorin, Rulik, Trigiante ’03 ;Karthauser, Saffin ’06 ;Rosseel, VR, Westra ’06; Chemissany,
Ploegh, VR ’07; Arkani-Hamed, Orgera, Polchinski ’07;. . .
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Motivation

Consider p-branes charged electrically under Ap+1 or magnetically under AD−p−3:

Timelike p-branes: ds2
D = e2A(r)ηµνdxµdxν + e2B(r)(dr2 + r2dΩ2

D−p−2).

Spacelike p-branes: ds2
D = e2A(t)δµνdxµdxν + e2B(t)(−dt2 + t2dΣ2

D−p−2).

Special cases are

1. domain walls = timelike (D − 2)-brane,

2. FLRW-cosmologies = spacelike (D-2)-brane,
3. instantons = Euclidean (-1)-brane [IIB D-instanton]

4. (D − 3)-branes [IIB 7-branes]

L = |g| R − 1
2Gij∂Φi∂Φj − V (Φ) (1)

Apart from the (D-3)-branes, solutions depend on one parameter

ds2
D = ±f(r)2dr2 + g(r)2ds2

D−1 , Φi(r) . (2)
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Motivation

Such solutions can be identified with curves Φi(r) on the scalar manifold.

What about the other brane-type solutions? → dimensionally reduce over p + 1-dimensional
worldvolume (Killing directions):

Timelike p-brane in D dimensions→ Euclidean “instanton” solution in D − p − 1

dimensions. (e.g. the black hole-instanton correspondence)
Spacelike p-brane in D dimensions→ cosmological solution in D − p − 1 dimensions.

V = 0 (. . . )

REVERSED REASONING: Reduce over transversal space

Timelike p-brane in D dimensions→ domain wall in p + 2 dimensions (e.g. DW/QFT
correspondence).

Spacelike p-brane in D dimensions→ Cosmology in p + 2 dimensions (e.g. do we live on a
S2-brane?).

V #= 0 (. . . )
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Motivation

Al brane-type solutions have description in terms of curves Φi(r) on a scalar manifold.

When reduction over worldvolume is considered: V = 0 → geodesic motion on the scalar
manifold. In terms of an affine parameter ρ(r):

Φ′′i + Γi
jkΦ′jΦ′k = 0 , Rrr = 1

2 ||v
2||g2−2Df2 (3)

Affine velocity ||v2|| is constant ||v2|| = GijΦ′iΦ′j . If Gij is indefinite then

||v||2 > 0 spacelike geodesics
||v||2 = 0 lightlike geodesics

||v||2 < 0 timelike geodesics
Program:

1. Dimensional reduce

2. Solve geodesic equations
3. Uplift the solutions
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Motivation

Find geodesic curves on which spaces?
Consider maximal supergravity in D = 10, 11 and their corresponding reductions over timelike and
spacelike tori:

Minkowskian Euclidean
D = 10 O(1,1) O(1,1)
D = 9 GL(2,IR)

O(2)
GL(2,IR)
O(1,1)

D = 8 SL(3,IR)×SL(2,IR)
O(3)×O(2)

SL(3,IR)×SL(2,IR)
O(2,1)×O(1,1)

D = 7 SL(5,IR)
O(5)

SL(5,IR)
O(3,2)

D = 6 O(5,5)
O(5)×O(5)

O(5,5)
O(5,C)

D = 5
E6(+6)
USp(8)

E6(+6)
USp(4,4)

D = 4
E7(+7)
SU(8)

E7(+7)
SU∗(8)

D = 3
E8(+8)
SO(16)

E8(+8)
SO∗(16)
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Motivation

Simplest example moduli space: torus-reduction of pure gravity

1. GL(n, IR)/ SO(n) for spacelike reductions.

2. GL(n, IR)/ SO(n − 1, 1) for timelike reductions.

ds2
D+n = e2αϕds2

D + e2βϕen ⊗ en . (4)

ϕ is breathing mode, controls overall volume.

en is vielbein on n-torus: en = Ln
a (x)dya and since overall volume is constant detL=1.

Thus internal space
ds2

n = Mabdyadyb , Mab = Ln
aLnb . (5)

Local SO(n) L → L O(y) leavesMabdyadyb invariant.

Rigid SL(n, IR) L → ΩL preserves Ansatz:Mabdy′ady′b where y′ = Ωy.
Thus L is coset representative of SL(n, IR)/ SO(n), the moduli group of the n-torus.

−gD+nRD+n →
√
−gD{RD + 1

4Tr∂M∂M−1 − 1
2∂ϕ∂ϕ} (6)
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Time-dependent Einstein solutions

Geodesics on SL(n, IR)/ SO(n)?
d
dt

[M−1 d
dt
M] = 0 . (7)

Integrable problem! → M−1 d
dtM = Q. And thus

M(t) = M(0)eQt . (8)

For geodesics through the originM(0) = we have a solution if

TrQ = 0 , QT = Q . (9)

Isometry maps geodesic→ new geodesic and Q transforms in the adjoint:Q → ΩQΩ−1. For
geodesics through origin Ω ∈ SO(n) ⊂ SL(n, IR) and Q can be diagonalized! This is a straight line
&φ = &vt .
Geodesics not true origin can be obtained via a non-compact SL(n, IR)-transformation.
All geodesics on SL(n, IR)/ SO(n) can be obtained via an isometry transformation of a straight line.

This result extends to all coset spaces that are maximally non-compact [Chemissany,
Ploegh, VR ’07].
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Time-dependent Einstein solutions

Uplift the general cosmological solution to D + n-dimensional vacuum solution.

ϕ = a t + b , M(t) = ΩD(t)ΩT (10)

where D(t) is diagonal and represents the trivial straight line solution. The Ω’s can be absorbed
as a coordinate transformation on the torus coordinates dy ′ = Ωdy. Result is the Kasner solution:

ds2 = −t2p0dt2 +
i

t2pidz2
i , (11)

p0 + 1 =
i

pi , (p0 + 1)2 =
i

p2
i . (12)

What if the D-dimensional FLRW Ansatz has k #= 0? Kasner becomes a generalization of
(flux-less) S-brane solutions for k = −1.
This was only an exercise, should extend to supergravity. Uplift a bit more involved. For the
result (but with a different technique), see [ Fre, Gili, Gargiulo, Sorin, Rulik, Trigiante ’03] .
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Non-zero potential?

If V #= 0 geodesic motion is deformed, but not always [Karthauser, Saffin ’06]

Related to pseudo-supersymmetry [Sonner, Townsend ’07, Chemissany, Ploegh, VR ’07].

PSEUDO-SUSY?
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Pseudo-supersymmetry and geodesics

=First-order formalism for cosmological solutions based on Domain wall/Cosmology
correspondence [Skenderis, Townsend ’06].

ds2
D = g(y)2ds2

D−1 + εf(y)2dy2 , ds2
D−1 = (ηε)abdxadxb , (13)

where ε = ±1 and ηε = diag(−ε, 1, . . . , 1).
If V (Φ) can be written in terms of another function W (Φ) as follows

V = ε 1
2Gij∂iW∂jW − D−1

4(D−2)W 2 , (14)

the action can be written as “a sum of squares” (plus a boundary term) :

S = ε dy fgD−1 (D−1)
4(D−2)

W − 2(D − 2)
ġ

fg

2
− 1

2
|| Φ̇

i

f
+ Gij∂jW ||2 (15)

First-order (pseudo)-BPS equations:

W = 2(D − 2)
ġ

fg
,

Φ̇i

f
+ Gij∂jW = 0 . (16)
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Pseudo-supersymmetry and geodesics

For domain-walls corresponds to real supersymmetry.
Applications of pseudo-susy?→ power-law cosmologies (scaling) :

a(τ) ∼ τP . (17)

Often dynamical attractors, cosmological “vacua”.

It was shown that for power-law solutions the scalar flow Φ̇i is a Killing Flow [Tolley, Wesley
’07] .

Assume flow is pseudo-BPS, then consider Φ̈i + Γi
jkΦ̇jΦ̇k = ∇Φ̇Φ̇i, in components:

∇jΦ̇i = ∇[jΦ̇i] + ∇(jΦ̇i) = ∇[jΦ̇i] = ∇[j∇i]W = 0 . (18)

Therefore, pseudo BPS powerlaw solutions describe a geodesic motion altough there is a
non-zero potential. (locally vice versa)
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Summary & Outlook

Summary

1. There is a correspondence between brane solutions and geodesic curves using dimensional
reduction.

2. The geodesic EOM can be solved using group theory. This was shown in a pedagogical
example: time-dependent Einstein solutions.

3. We presented the multi-scalar pseudo-BPS equations.

4. When the scalars are massive a geodesic motion can occur: Power-law cosmological
solutions that are pseudo-BPS have this property.

Future
1. Geodesic curves on cosets with non-compact isotropy and instantons [Bergshoeff,

Chemissany, Ploegh, Van Riet, to appear]

2. Pseudo-supersymmetry extended to p-forms. Pseudo-susy of S-branes?

3. Pseudo-supersymmetry in holography?
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