Exploring M theory symmetries through $D=11$ supergravity

Based on S.V. JHEPO3 (2007) 010

Silvia Vaulà, IFT/CSIC Madrid

Outline

Goal: to infer some properties of M-Theory through the study of 11-dim Sugra.
Symmetries
Extended objects

Review of the relevant aspects of String Theory

U-duality
D-branes

11-dim Sugra Free Differential Algebra

Conclusions

String dualities

M-Theory is a more fundamental unifying theory

S and T duality relate different String Theories

U-Duality

11-dim Sugra (M-Theory) is proposed as unifying theory

In the Supergravity limit, type IIA arises form compactification of 11-dim Sugra on a circle

10-dim S and T duality are unified in lower dimensions

Spontaneous Compactification

Expand in Fourier serie along the compact directions

$$
\begin{aligned}
& \{X\} \rightarrow\{x, y\} ; \quad \Phi(X)=\Phi(x, y) \\
& \Phi(x, y)=\sum_{n} \Phi_{n}(x) e^{i \frac{y}{R} n}
\end{aligned}
$$

Integrate out the massive modes

$$
\begin{gathered}
\square_{D} \Phi(x, y)=0 \\
\square_{D-1} \Phi_{n}(x)-m_{n}^{2} \Phi(x)_{n}=0 \quad m_{n}=\frac{n}{R}
\end{gathered}
$$

10 dim Supergravity
$g_{\mu \nu} \quad B_{\mu \nu} \quad \Phi$

$$
C_{\mu_{1} \ldots \mu_{p}}
$$

U-Duality

11-dim Sugra is the low energy limit of M-Theory

In the Supergravity limit, type IIA arises form compactification of 11-dim Sugra on a circle S and T duality are "unified" in lower dimensions

$$
D \leq 5 \quad \mathcal{L}=R+\mathcal{N}_{\Lambda \Sigma} \mathcal{F}_{\mu \nu}^{\Lambda} \mathcal{F}^{\Sigma \mu \nu}+g_{i j} \partial_{\mu} \phi^{i} \partial^{\mu} \phi^{j}
$$

S and T Duality unify in U-Duality which is a manifest symmetry of supergravities in low dimensions.

Lower dimensional theories have bigger U-Duality group.
Are symmetries unified in lower or higher dimensions?

Proposals

In spite of the fact that 11-dim Sugra action is manifestly invariant under the Super Poincaré group, it is conjectured that it encodes the symmetries of the lower dimensional U-duality groups.

11-dim Sugra is a non linear realisation of a bigger group (E_{10} or E_{11})

```
Cremmer, Julia, Lu, Pope, West, Damour, Kleinschmidt, Nicolai (I998)
```

11-dim Sugra encodes a bigger group into its FDA
D'Auria, Fre (1982) S.V. (2006)

Extended objects

When strings are introduced, other extended objects (D-branes) naturally enter the game.

D-branes are gravity sources and appear as massive extended objects in the classical solutions of 10-dim Sugra

There exist M-brane solution also in 11-dim Sugra

String Theory and M-theory as theories of extended objects

Extended objects

11-dim Sugra
$\left(g_{\mu \nu}, \psi_{\mu}, C_{\mu \nu \rho}\right)$

11-dim Sugra

+ M-branes
de Azcarraga, Gauntlett, Izquierdo, Townsend (1989)

The M-Algebra
Sezgin (1996)

$$
\begin{array}{lll}
{\left[P_{a}, P_{b}\right]=0} & {\left[Q_{\alpha}, M_{a b}\right]=\gamma_{a b \alpha}{ }^{\beta} Q_{\beta}} & {\left[Q_{\alpha}, P_{b}\right]=0} \\
{\left[M_{a b}, M_{c d}\right]=\eta_{a c} M_{c d}+\ldots} & {\left[M_{a b}, P_{c}\right]=\eta_{c[a} P_{b]}}
\end{array}
$$

$$
\left\{Q_{\alpha}, Q_{\beta}\right\}=i P_{a} \gamma_{\alpha \beta}^{a} \quad \text { 11-dim Super Poincaré Group }
$$

$$
\left\{Q_{\alpha}, Q_{\beta}\right\}=i P_{a} \gamma_{\alpha \beta}^{a}+Z_{a b} \gamma_{\alpha \beta}^{a b}+i Z_{a_{1} \ldots a_{5}} \gamma_{\alpha \beta}^{a_{1} \ldots a_{5}}
$$

Central extension of the 11-dim Super Poincaré Group

$$
\left\{Q_{\alpha}, Q_{\beta}\right\}=i P_{a} \gamma_{\alpha \beta}^{a}+Z_{a b} \gamma_{\alpha \beta}^{a b}+i Z_{a_{1} \ldots a_{5}} \gamma_{\alpha \beta}^{a_{1} \ldots a_{5}}
$$

$$
\left[Q_{\alpha}, P_{b}\right] \neq 0 \quad\left[Q_{\alpha}, Z_{a b}\right] \neq 0
$$

$$
\left[P_{a}, P_{b}\right] \neq 0
$$

Our first results

The Minimal (zero field strengths) FDA of 11-dim Supergravity encodes M-Algebra symmetries

The FDA

of 11-dim Supergravity
encodes at least the lowest level of E_{11}

Free Differential Algebras

Commutators $\mathcal{T G}$

Maurer-Cartan eqns $\mathcal{T}^{*} \mathcal{G}$

$$
d \mu^{A}-\frac{1}{2} C_{C B}^{A} \mu^{B} \wedge \mu^{C}=0
$$

$\left[T_{[A},\left[T_{B}, T_{C\}}\right\}\right\}=0$
$\mu^{A}\left(T_{B}\right)=\delta_{B}^{A}$

Jacobi identities

$$
C_{B[C}^{A} C_{D E\}}^{B}=0
$$

$$
d\left(d \mu^{A}-\frac{1}{2} C_{C B}^{A} \mu^{B} \wedge \mu^{C}=0\right)
$$

For the construction of sugra with the geometric approach we associate to every generator a 1-form potential of the theory: $\mu^{A} \rightarrow \mathcal{A}^{A}$

11-dim Supergravity

11-dim Supermultiplet

$$
\left(g_{\mu \nu}, \psi_{\mu}, C_{\mu \nu \rho}\right) \quad \mu, \nu, \rho=0, \ldots 10
$$

$$
V^{a} P_{b}=\delta_{b}^{a} \quad \omega^{a b} M_{c d}=\delta_{c d}^{a b}
$$

$$
\psi^{\alpha} Q_{\beta}=\delta_{\beta}^{\alpha}
$$

$\left(V^{a}, \omega^{a b}, \psi\right) \in \mathcal{T}^{*} \mathcal{G} \quad \mathcal{G}=$ super-Poincaré in $\mathrm{D}=11$

$$
\begin{aligned}
T^{a} & \equiv D V^{a}-\frac{i}{2} \bar{\psi} \gamma^{a} \psi=0 \\
\mathcal{R}^{a b} & \equiv d \omega^{a b}-\omega^{a}{ }_{c} \omega^{c b}=0 \\
\rho & \equiv D \psi=0
\end{aligned}
$$

11-dim Supergravity

11-dim Supermultiplet

$$
\left(g_{\mu \nu}, \psi_{\mu}, C_{\mu \nu \rho}\right) \quad \mu, \nu, \rho=0, \ldots 10
$$

$$
V^{a} P_{b}=\delta_{b}^{a} \quad \omega^{a b} M_{c d}=\delta_{c d}^{a b}
$$

$$
\psi^{\alpha} Q_{\beta}=\delta_{\beta}^{\alpha}
$$

$\left(V^{a}, \omega^{a b}, \psi\right) \in \mathcal{T}^{*} \mathcal{G} \quad \mathcal{G}=$ super-Poincaré in $\mathrm{D}=11$

$$
\begin{aligned}
& d \\
& d T^{a} \\
& \equiv D V^{a}-\frac{i}{2} \bar{\psi} \gamma^{a} \psi=0 \\
& D \mathcal{R}^{a b} \\
& D \equiv d \omega^{a \overline{ }} \nless \omega^{a}{ }_{c} \omega^{c b}=0 \\
& \rho \equiv D \psi=0
\end{aligned}
$$

Minimal FDA

algebra $d \mu^{A}-\frac{1}{2} C_{C B}^{A} \mu^{B} \wedge \mu^{C}=0$
μ^{A} 1-forms

$$
d\left(d \mu^{A}-\frac{1}{2} C_{C B}^{A} \mu^{B} \wedge \mu^{C}=0\right)
$$

FDA $\quad d \pi^{I}+C_{J_{1} \ldots J_{n}}^{I} \pi^{J_{1}} \wedge \ldots \pi^{J_{n}}=0 \quad d\left(d \pi^{I}+C_{J_{1} \ldots J_{n}}^{I} \pi^{J_{1}} \wedge \ldots \pi^{J_{n}}\right)=0$

$$
\pi^{i} \quad \mathrm{p} \text {-forms }
$$

Minimal FDA

algebra

$$
\begin{aligned}
& d \mu^{A}-\frac{1}{2} C_{C B}^{A} \mu^{B} \wedge \mu^{C}=0 \quad d\left(d \mu^{A}-\frac{1}{2} C_{C B}^{A} \mu^{B} \wedge \mu^{C}=0\right) \\
& \mu^{A} \quad \text { 1-forms }
\end{aligned}
$$

FDA

$$
d \pi^{I}+C_{J_{1} \ldots J_{n}}^{I} \pi^{J_{1}} \wedge \ldots \pi^{J_{n}}=F^{I} d\left(d \pi^{I}+C_{J_{1} \ldots J_{n}}^{I} \pi^{J_{1}} \wedge \ldots \pi^{J_{n}}\right)=d F^{I}
$$ contractible generators

(field strengths)
Bianchi identities

Minimal FDA

algebra

$$
\begin{aligned}
& d \mu^{A}-\frac{1}{2} C_{C B}^{A} \mu^{B} \wedge \mu^{C}=0 \quad d\left(d \mu^{A}-\frac{1}{2} C_{C B}^{A} \mu^{B} \wedge \mu^{C}=0\right) \\
& \mu^{A} \quad \text { 1-forms }
\end{aligned}
$$

FDA

$$
d \pi^{I}+C_{J_{1} \ldots J_{n}}^{I} \pi^{J_{1}} \wedge \ldots \pi^{J_{n}}=F^{I} d\left(d \pi^{I}+C_{J_{1} \ldots J_{n}}^{I} \pi^{J_{1}} \wedge \ldots \pi^{J_{n}}\right)=d F^{I}
$$ contractible generators

(field strengths)

Bianchi identities

$$
d C-\frac{1}{2} \bar{\psi} \gamma_{a b} \psi V^{a} V^{b}=0 \quad \bar{\psi} \gamma^{a b} \psi \bar{\psi} \gamma_{a} \psi=0
$$

Minimal FDA

$$
\begin{aligned}
& d V^{a}-\frac{i}{2} \bar{\psi} \gamma^{a} \psi=0 \\
& d \psi=0
\end{aligned}
$$

symmetries of the solution $\mathcal{R}^{a b}=F=\rho=0$ (plus $\operatorname{SO}(1,10)$)

$$
\left\{Q_{\alpha}, Q_{\beta}\right\}=\gamma_{\alpha \beta}^{a} P_{a} \quad\left\{Q_{\alpha}, P_{a}\right\}=0 \quad\left[P_{a}, P_{b}\right]=0
$$

$$
d C-\frac{1}{2} \bar{\psi} \gamma_{a b} \psi V^{a} V^{b}=0
$$

yes

Frè, D'Auria
Nucl.Phys.B201:1982

Group reduction of a Minimal FDA

$$
\begin{gathered}
d C-\frac{1}{2} \bar{\psi} \gamma_{a b} \psi V^{a} V^{b}=0 \quad\left\{V^{a}, \psi\right\} \in \mathcal{T}^{*} \mathcal{G}_{0} \\
C=K_{i j k} \sigma^{i} \sigma^{j} \sigma^{k} \quad\left\{V^{a}, \psi\right\} \subset\left\{\sigma^{i}\right\} \in \mathcal{T}^{*} \tilde{\mathcal{G}}_{0} \quad \mathcal{G}_{0} \subset \tilde{\mathcal{G}}_{0}
\end{gathered}
$$

constants

If $\tilde{\mathcal{G}}_{0}$ is a group manifold, then

$$
d \sigma^{i}-\frac{1}{2} c^{i}{ }_{k j} \sigma^{j} \wedge \sigma^{k}=0 \quad \begin{aligned}
& d V^{a}-\frac{i}{2} \bar{\psi} \gamma^{a} \psi=0 \\
& d \psi=0 \\
& d C-\frac{1}{2} \bar{\psi} \gamma_{a b} \psi V^{a} V^{b}=0
\end{aligned}
$$

Group reduction of a Minimal FDA

?which is the algebra $d \sigma^{i}-\frac{1}{2} c^{i}{ }_{j k} \sigma^{j} \wedge \sigma^{k}=0$

There is not a "turn of the crank" procedure to determine the algebraFrè, D'Auria Nucl.Phys. B201:1982
Bandos, de Azcarraga, Izquierdo, Picon, Varela Phys. Lett.B 596 (2004)
Castellani, arXiv:hep-th/0508213

?
It is possible to find "the most general solution"? In case, which is it?

Sezgin's M-Algebra is the biggest extension of the Super Poincaré Algebra If this is a solution, then it is the most general solution

The M-Algebra

$\left\{Q_{\alpha}, Q_{\beta}\right\}=i \gamma_{\alpha \beta}^{a} P_{a}+i \gamma_{\alpha \beta}^{a} Z_{a}+\gamma_{\alpha \beta}^{a b} Z_{a b}+i \gamma_{\alpha \beta}^{a_{1} \ldots a_{5}} Z_{a_{1} \ldots a_{5}}$

$$
\left[Q_{\alpha}, P_{a}\right]=i \gamma_{a \alpha \beta} \Sigma^{\beta}+\gamma_{a b \alpha \beta} \Sigma^{b \beta}+\gamma_{a b_{1} \cdots b_{4} \alpha \beta} \Sigma^{b_{1} \cdots b_{4} \beta}
$$

$$
\left[Q_{\alpha}, Z^{a}\right]=-i(1-\lambda-\tau) \gamma_{\alpha \beta}^{a} \Sigma^{\beta}
$$

$\left[Q_{\alpha}, Z^{a b}\right]=\frac{\lambda}{10} \gamma_{\alpha \beta}^{a b} \Sigma^{\beta}+i \gamma_{\alpha \beta}^{a} \Sigma^{b \beta}-6 i \gamma_{\alpha \beta}^{c d} \Sigma^{a b c d \beta}$
$\left[Q_{\alpha}, Z^{a_{1} \ldots a_{5}}\right]=i \frac{\tau}{720} \gamma_{\alpha \beta}^{a_{1} \ldots a_{5}} \Sigma^{\beta}+\gamma_{\alpha \beta}^{a_{5}} \Sigma^{\alpha_{1} \ldots a_{4} \beta}$

$$
\left[P_{a}, P_{b}\right]=0
$$

The M-Algebra

M2- and M5-brane central charges

$$
\left\{Q_{\alpha}, Q_{\beta}\right\}=i \gamma_{\alpha \beta}^{a} P_{a}+i \gamma_{\alpha \beta}^{a} Z_{a}+\gamma_{\alpha \beta}^{a b} Z_{a b}+i \gamma_{\alpha \beta}^{a_{1} \ldots a_{5}} Z_{a_{1} \ldots a_{5}}
$$

$$
\left[Q_{\alpha}, P_{a}\right]=i \gamma_{a \alpha \beta} \Sigma^{\beta}+\gamma_{a b \alpha \beta} \Sigma^{b \beta}+\gamma_{a b_{1} \cdots b_{4} \alpha \beta} \Sigma^{b_{1} \cdots b_{4} \beta}
$$

$$
\left[Q_{\alpha}, Z^{a}\right]=-i(1-\lambda-\tau) \gamma_{\alpha \beta}^{a} \Sigma^{\beta}
$$

$$
\left[Q_{\alpha}, Z^{a b}\right]=\frac{\lambda}{10} \gamma_{\alpha \beta}^{a b} \Sigma^{\beta}+i \gamma_{\alpha \beta}^{a} \Sigma^{b \beta}-6 i \gamma_{\alpha \beta}^{c d} \Sigma^{a b c d \beta}
$$

$$
\left[Q_{\alpha}, Z^{a_{1} \ldots a_{5}}\right]=i \frac{\tau}{720} \gamma_{\alpha \beta}^{a_{1} \ldots a_{5}} \Sigma^{\beta}+\gamma_{\alpha \beta}^{a_{5}} \Sigma^{\alpha_{1} \ldots a_{4} \beta}
$$

$$
\left[P_{a}, P_{b}\right]=0
$$

The M-Algebra

M2- and M5-brane central charges

$$
\left\{Q_{\alpha}, Q_{\beta}\right\}=i \gamma_{\alpha \beta}^{a} P_{a}+i \gamma_{\alpha \beta}^{a} Z_{a}+\gamma_{\alpha \beta}^{a b} Z_{a b}+i \gamma_{\alpha \beta}^{a_{1} \ldots a_{5}} Z_{a_{1} \ldots a_{5}}
$$

$$
\left[Q_{\alpha}, P_{a}\right]=i \gamma_{a \alpha \beta} \Sigma^{\beta}+\gamma_{a b \alpha \beta} \Sigma^{b \beta}+\gamma_{a b_{1} \cdots b_{4} \alpha \beta} \Sigma^{b_{1} \cdots b_{4} \beta}
$$

$$
\left[Q_{\alpha}, Z^{a}\right]=-i(1-\lambda-\tau) \gamma_{\alpha \beta}^{a} \Sigma^{\beta}
$$

$$
\left[Q_{\alpha}, Z^{a b}\right]=\frac{\lambda}{10} \gamma_{\alpha \beta}^{a b} \Sigma^{\beta}+i \gamma_{\alpha \beta}^{a} \Sigma^{b \beta}-6 i \gamma_{\alpha \beta}^{c d} \Sigma^{a b c d \beta}
$$

$$
\left[Q_{\alpha}, Z^{a_{1} \ldots a_{5}}\right]=i \frac{\tau}{720} \gamma_{\alpha \beta}^{a_{1} \ldots a_{5}} \Sigma^{\beta}+\gamma_{\alpha \beta}^{a_{5}} \Sigma^{\alpha_{1} \ldots a_{4} \beta}
$$

$$
\left(Z_{a_{1} \ldots a_{p}}, \Sigma^{\alpha a_{1} \ldots a_{p-1}}\right) \quad p=1,2,5
$$

The M-Algebra

M2- and M5-brane central charges
$\left\{Q_{\alpha}, Q_{\beta}\right\}=i \gamma_{\alpha \beta}^{a} P_{a}+i \gamma_{\alpha \beta}^{a} Z_{a}+\gamma_{\alpha \beta}^{a b} Z_{a b}+i \gamma_{\alpha \beta}^{a_{1} \ldots a_{5}} Z_{a_{1} \ldots a_{5}}$
$\left[Q_{\alpha}, P_{a}\right]=i \gamma_{a \alpha \beta} \Sigma^{\beta}+\gamma_{a b \alpha \beta} \Sigma^{b \beta}+\gamma_{a b_{1} \cdots b_{4} \alpha \beta} \Sigma^{b_{1} \cdots b_{4} \beta}$
$\left[Q_{\alpha}, Z^{a}\right]=-i(1-\lambda-\tau) \gamma_{\alpha \beta}^{a} \Sigma^{\beta}$
$\left[Q_{\alpha}, Z^{a b}\right]=\frac{\lambda}{10} \gamma_{\alpha \beta}^{a b} \Sigma^{\beta}+i \gamma_{\alpha \beta}^{a} \Sigma^{b \beta}-6 i \gamma_{\alpha \beta}^{c d} \Sigma^{a b c d \beta}$
$\left[Q_{\alpha}, Z^{a_{1} \ldots a_{5}}\right]=i \frac{\tau}{720} \gamma_{\alpha \beta}^{a_{1} \ldots a_{5}} \Sigma^{\beta}+\gamma_{\alpha \beta}^{a_{5}} \Sigma^{\alpha_{1} \ldots a_{4} \beta}$
$\left[P_{a}, P_{b}\right] \neq 0 \quad$ is not compatible with a flat background

Solutions (s.V. JHEPO3 (2007) 010)

$$
\begin{array}{ll}
C=C\left(P^{a}, B^{a_{1} \ldots a_{p}}, \psi, \eta^{a_{1} \ldots a_{p-1}}\right) \quad d C-\frac{1}{2} \bar{\psi} \gamma_{a b} \psi V^{a} V^{b}=0 \\
p=1 & \text { No } \longrightarrow \text { it is impossible to satisfy the FDA } \\
p=2 & \text { Yes } \\
p=5 & \text { No } \\
p=1,2 & \text { Yes } \\
p=1,5 & \text { No non closure of the M-Algebra } \\
p=2,5 & \text { Yes M5 without M2 } \\
p=1,2,5 & \text { Yes }
\end{array}
$$

Summary (1)

We started from a theory with "physical" fields

$$
V_{\mu}^{a}, \psi_{\mu}, C_{\mu \nu \rho}
$$

whose vacuum was invariant under the Super Poincaré Group

We ended with a theory with "auxiliary" fields

$$
V_{\mu}^{a}, \psi_{\mu}, B_{\mu}^{a}, B_{\mu}^{a b}, B_{\mu}^{a_{1} \ldots a_{5}}, \eta_{\mu}, \eta_{\mu}^{a}, \eta_{\mu}^{a_{1} \ldots a_{4}}
$$

whose vacuum is invariant under the "flat" M-Algebra

Non-Minimal FDA

$$
\begin{array}{cc}
d \pi^{i}+\frac{1}{2} c_{j k}^{i} \pi^{j} \wedge \pi^{k}=F^{i} & \leftrightarrow \\
c_{j k}^{i}\left(F^{j}-\frac{1}{2} c_{l m}^{j} \pi^{l} \wedge \pi^{m}\right) \wedge \pi^{k}=d F^{i} & \leftrightarrow
\end{array} \begin{gathered}
\text { Bianchi ident strengths de } \\
\begin{array}{lll}
\text { minimal generators } \pi^{i} & \leftrightarrow & \text { vector potentials } \\
\text { contractible generators } F^{i} & \leftrightarrow & \text { field strengths } \\
\text { Frè, Class. Quant. Grav. } 1 \text { (1984) }
\end{array}
\end{gathered}
$$

Frè, Class. Quant. Grav. 1 (1984)

Frè, Class. Quant. Grav. 1 (1984)

Is it possible to further enlarge the group $\tilde{\mathcal{G}}_{0}$ in order to find an expansion $F^{i}=K_{j_{1} \ldots j_{n}}^{i} \tilde{\sigma}^{j_{1}} \wedge \ldots \tilde{\sigma}^{j_{n}}$ which satisfies the FDA?

The simplest example

$$
\begin{aligned}
& \text { d } 0=D V^{a}-\frac{i}{2} \bar{\psi} \gamma^{a} \psi \\
& 0=d \omega^{a} \ll \omega^{a c} \omega_{c}^{b} \\
& D 0=D \psi \\
& F=d C-\frac{1}{2} \bar{\psi} \gamma_{a b} \psi V^{a} V^{b}
\end{aligned}
$$

no torsion
flat space-time
flat space-time
the FDA is consistent with any of the contractible generators set to zero

Keep the same parametrisation for C and modify the underlying algebra

The "flat" M-Algebra is already the most general

The external automorphism group

$$
C=C\left(P, B^{(p)}, \psi, \eta^{(p-1}\right)
$$

$$
\begin{gathered}
d C-\frac{1}{2} \bar{\psi} \gamma_{a b} \psi V^{a} V^{b}=0 \\
d B^{(p)}+\bar{\psi} \gamma^{(p)} \psi=0
\end{gathered}
$$

$$
F=d C-\frac{1}{2} \bar{\psi} \gamma_{a b} \psi V^{a} V^{b}
$$

$$
d B^{(p+q)}+A^{(q)} B^{(p)}+\bar{\psi} \gamma^{(p+q)} \psi=0
$$

$$
R_{(r)} A^{(q)}=\delta_{(r)}^{(q)}
$$

$$
\left[R_{(r)}, Z_{(p)}\right]=Z_{(p+r)}
$$

$$
\left[R_{(r)}, R_{(s)}\right]=R_{(r+s)}
$$

The external automorphism group

$$
C=C\left(P, B^{(p)}, \psi, \eta^{(p-1}\right)
$$

$d C-\frac{1}{2} \bar{\psi} \gamma_{a b} \psi V^{a} V^{b}=0$

$$
d B^{(p)}+\bar{\psi} \gamma^{(p)} \psi=0
$$

Group generators
fields

Automorphism generators $=$
connections

$$
\begin{gathered}
F=d C-\frac{1}{2} \bar{\psi} \gamma_{a b} \psi V^{a} V^{b} \\
d B^{(p+q)}+A^{(q)} B^{(p)}+\bar{\psi} \gamma^{(p+q)} \psi=0
\end{gathered}
$$

$$
\begin{gathered}
R_{(r)} A^{(q)}=\delta_{(r)}^{(q)} \\
{\left[R_{(r)}, Z_{(p)}\right]=Z_{(p+r)}}
\end{gathered}
$$

$$
\begin{array}{r}
r=0 \\
\mathrm{SO}(1,10) \\
\text { lowest levels of } \left.\mathrm{E}_{11}, R_{(s)}\right]=R_{(r+s)}
\end{array}
$$

Summary

The "flat" M-Algebra

$$
\begin{aligned}
& {\left[P_{a}, P_{b}\right]=0} \\
& \left\{Q_{\alpha}, Q_{\beta}\right\}=i \gamma_{\alpha \beta}^{a} P_{a}+\gamma_{\alpha \beta}^{(p)} Z_{(p)} \\
& {\left[Q_{\alpha}, P_{a}\right]=\gamma_{\alpha \beta}^{\ddot{\circ}} \Sigma_{(p-1)}} \\
& {\left[Q_{\alpha}, Z_{(p)}\right]=\gamma_{\alpha \beta} \Sigma_{(p-1)}}
\end{aligned}
$$

The lowest Ei1 levels

$$
\begin{aligned}
& {\left[R_{(r)}, Z_{(p)}\right]=Z_{(p+r)}} \\
& {\left[R_{(r)}, R_{(s)}\right]=R_{(r+s)}}
\end{aligned}
$$

fields

Summary

The "flat" M-Algebra

$$
\begin{aligned}
& {\left[P_{a}, P_{b}\right]=0} \\
& \left\{Q_{\alpha}, Q_{\beta}\right\}=i \gamma_{\alpha \beta}^{a} P_{a}+\gamma_{\alpha \beta}^{(p)} Z_{(p)} \\
& {\left[Q_{\alpha}, P_{a}\right]=\gamma_{\alpha \beta}^{\ldots} \Sigma_{(p-1)}} \\
& {\left[Q_{\alpha}, Z_{(p)}\right]=\gamma_{\alpha \beta}^{\ldots} \Sigma_{(p-1)}}
\end{aligned}
$$

fields

M-Algebra generators can be interpreted as E11 generators

The lowest E_{11} levels

$$
\begin{aligned}
& {\left[R_{(r)}, Z_{(p)}\right]=Z_{(p+r)}} \\
& {\left[R_{(r)}, R_{(s)}\right]=R_{(r+s)}}
\end{aligned}
$$

$R_{(r) \text { rotates one into another }}$ the brane charges and was shown (West) to be as well a symmetry of the system. Here we show that the $D=11$ action enjoys such a symmetry and that the brane charges are "hidden" in the structure of the 3-form.

Thank you!

String Theory

Our 4 dimensional World

