Explicit CP Violation in the MSSM Through $H o \gamma \gamma$

Stefan Hesselbach

School of Physics & Astronomy, University of Southampton

based on

S. Moretti, S. Munir, P. Poulose, PLB 649 (2007) 206 [hep-ph/0702242]

SH, S. Moretti, S. Munir, P. Poulose, arXiv:0706.4269

HEP 2007, Manchester, July 21, 2007

Introduction MSSM with complex parameters

General MSSM:

Many parameters can be complex

Explicit CP violation

- May help to explain baryon asymmetry of universe
- Constraints from electric dipole moments (EDMs) of e, n, Hg, Tl [Ibrahim, Nath, '99; Barger, Falk, Han, Jiang, Li, Plehn, '01; Abel, Khalil, Lebedev, '01] [Oshima, Nihei, Fujita, '05; Pospelov, Ritz, '05; Olive, Pospelov, Ritz, Santoso, '05] [Abel, Lebedev, '05; Yaser Ayazi, Farzan, '06, '07]
- Global U(1) symmetries: some phases eliminated
 - \rightarrow e.g. phase of one gaugino mass parameter M_i
- Physical phases in Higgs sector
 - μ : Higgs-higgsino mass parameter
 - A_f : trilinear couplings of sfermions

Introduction Higgs sector in complex MSSM

- MSSM: 2 Higgs doublets
 - \rightarrow 5 physical Higgs particles at tree-level (h, H, A, H^{\pm})
- \tilde{t} and \tilde{b} loops ⇒ explicit CP violation in Higgs sector [Pilaftsis, '98] [Pilaftsis, Wagner, '99; Demir, '99, Carena, Ellis, Pilaftsis, Wagner, '00, '01; Choi, Drees, Lee, '00]
 - CP-even (h, H) and CP-odd (A) neutral Higgs mix

 \rightarrow 3 neutral mass eigenstates (H_1 , H_2 , H_3), mixing matrix O

- Leading contributions to (h, H)-A mixing $\propto \text{Im}(\mu A_f) \rightarrow \varphi_{\text{eff}} = \varphi_{\mu} + \varphi_{A_f}$
 - \rightarrow Choosing A_f real, analyzing $\varphi_{\text{eff}} = \varphi_{\mu}$ effects in the following
- Spectrum calculation (masses m_{H_i} and mixing matrix O)
 - CPSUPERH [Carena, Ellis, Pilaftsis, Wagner '00] [Lee, Pilaftsis, Carena, Choi, Drees, Ellis, Wagner '03; Ellis, Lee, Pilaftsis, '06]
 - FEYNHIGGS [Heinemeyer '01; Frank, Heinemeyer, Hollik, Weiglein '02]
 [Frank, Hahn, Heinemeyer, Hollik, Rzehak, Weiglein, '06]

$H_1 ightarrow \gamma \gamma$

■ $pp \rightarrow H \rightarrow \gamma\gamma$: important search channel at LHC for $m_H \leq 150$ GeV

Decay at 1-loop via f, W, H^{\pm} , \tilde{f} , $\tilde{\chi}^{\pm}$ loops in MSSM

$$H_{i} - - - \begin{pmatrix} & & & \\$$

CP violation (CPV) enters via phase dependence of

- Masses $m_{H_1} \rightarrow \text{small}$
- Mixing matrix $O \leftrightarrow H_i$ couplings (also to SM particles)
- \tilde{f} , $\tilde{\chi}^{\pm}$ sector (masses, couplings to H_i)

$H_1 ightarrow \gamma \gamma$

 $gg \rightarrow H_i \rightarrow \gamma \gamma$ at LHC in CPV MSSM

[Choi, Hagiwara, Lee, '01]

- Scenarios with heavy sparticles $(\tilde{f}, \tilde{\chi}^{\pm}) \leftrightarrow \text{CPV}$ in H_i couplings
- $\mathcal{O}(10^2 10^3)$ suppression of $BR(H_1 \rightarrow \gamma \gamma)$ possible
 - \Rightarrow suppression of $\sigma \times BR$

Here:

- Investigate possible effects of light sparticles
- Calculation of m_{H_i} , O, BR($H \rightarrow \gamma \gamma$) with CPSUPERH
- Detailed discussion of A_f , μ , tan β dependence
- Scan over MSSM parameters [Moretti, Munir, Poulose, '07]
 in average ~ 50% deviation between CPV and CPC case possible for parameter points with m_{H_1} in bins of size 4 GeV

$H_1 ightarrow \gamma \gamma$ **Numerical results**

BR($H_1 \rightarrow \gamma \gamma$) as function of $m_{H^{\pm}}$

for $M_{(\tilde{Q}_3, \tilde{D}_3, \tilde{L}_3, \tilde{E}_3)} = 1 \text{ TeV}, \ |\mu| = 1 \text{ TeV}, \ A_f = 1.5 \text{ TeV}, \ \tan \beta = 20$

120.8

120.7

120.2

119.3

119.0

20

250

φ_u=0 120.9

φ_μ=40° 120.8

 $\varphi_{\rm H} = 90^{\circ} 120.3$

 $\phi_{\rm u} = 140^{\circ} 119.5$

 $\phi_{\rm u} = 180^{\circ} 119.3$

300

$H_1 ightarrow \gamma \gamma$ Numerical results

m_{H_1} as function of $m_{H^{\pm}}$

for $M_{(\tilde{Q}_3, \tilde{D}_3, \tilde{L}_3, \tilde{E}_3)} = 1 \text{ TeV}, \ |\mu| = 1 \text{ TeV}, \ A_f = 1.5 \text{ TeV}, \ \varphi_{\mu} = 0, \ \varphi_{\mu} = 90^{\circ}$

 \rightarrow deviations $\Delta m_{H_1}(\varphi_{\mu})$ within experimental uncertainty

Summary

- **BR**($H_1 \rightarrow \gamma \gamma$) in CP-violating MSSM
- Analyzed φ_{μ} dependence for $\varphi_{A_f} = 0$ (parameterization of $\arg(\mu A_f)$ dependence)
- Impact of light sparticles
 - \rightarrow light stops (\tilde{t}_1): possibly large effect
 - \rightarrow other light sparticles $(\tilde{b}_1, \tilde{\tau}_1, \tilde{\chi}_1^{\pm})$: little effect
- BR increased or decreased for $\varphi_{\mu} \neq 0$ → depends on SUSY scenario

Outlook

Projects within
New connections between Experiment and Theory
(NExT) Institute
(Southampton University ↔ PPD, RAL)

http://www.hep.phys.soton.ac.uk/next/NEXT_web/NEXT_web.htm

- Analysis of full production + decay process $gg \rightarrow H_i \rightarrow \gamma\gamma$
 - Enhancement or cancellation between production + decay?
 - Impact of Higgs mixing in propagator
 - \rightarrow Net effect for Higgs search at LHC
- Explicit CP violation in NMSSM Higgs sector

[Ellis, Lee, Pilaftsis, '04]