$H^{\pm}W^{\mp}$ production in the MSSM at the LHC

Stefan Hesselbach

School of Physics & Astronomy, University of Southampton

based on D. Eriksson, SH, J. Rathsman, hep-ph/0612198

HEP 2007, Manchester, July 21, 2007

Introduction

- Discovery of charged Higgs $(H^{\pm}) \Rightarrow$ new physics
- Main search channels at LHC: $gb \rightarrow H^-t$ and $gg \rightarrow H^-t\bar{b}$
- $H^{\pm}W^{\mp}$ production: large cross section [Barrientos Bendezú, Kniehl, '98; Brein, '02; Asakawa, Brein, Kanemura '05]

● $H^{\pm} \rightarrow tb$ decay: large irreducible background from $t\bar{t}$ production [Moretti, Odagiri, '98]

- Here: $H^{\pm}W^{\mp}$ production and $H^{\pm} \rightarrow \tau^{\pm}\nu$ decay
 - Suppression of background by appropriate cuts
 - In MSSM with real and complex parameters
 - → Resonance enhancement possible

[Akeroyd, Baek, '01; Mohn, Gollub, Assamagan, '05]

 \rightarrow Effects of CP violation, CP asymmetry

[Akeroyd, Baek, '00]

$H^{\pm}W^{\mp}$ production at LHC

- At hadron colliders: $b\bar{b} \rightarrow H^{\pm}W^{\mp}$ and $gg \rightarrow H^{\pm}W^{\mp}$
- Here: focus on $m_{H^{\pm}} \sim m_t$ and large tan β with large $BR(H^{\pm} \to \tau \nu)$ → $b\bar{b} \to H^{\pm}W^{\mp}$ dominates:

- Cross section calculation
 - Implemented as external process in PYTHIA [Sjöstrand et al.]
 - FEYNHIGGS: masses, mixing and BR of Higgs bosons

[Hahn, Hollik, Heinemeyer, Weiglein]

Signature

- Simulation of $(pp \rightarrow W^{\pm} + H^{\mp} \rightarrow jj + \tau \nu)$
- Decays $H^{\pm} \to \tau \nu$ and $W^{\pm} \to jj$ in PYTHIA with $BR(H^{\pm} \to \tau \nu)$ from FEYNHIGGS
- Tau decay with TAUOLA \rightarrow spin effects
 Focus on hadronic τ decays
- **Signature:** $2j + \tau_{jet} + \not p_{\perp}$
- p_{\perp} from 2ν: $H^{\pm} \rightarrow \tau \nu \rightarrow \tau_{jet} + 2\nu$
 - \rightarrow reconstruction of H^{\pm} invariant mass not possible
 - \rightarrow analysis of transverse mass from $p_{\perp \tau_{\text{jet}}}$ and $\not p_{\perp}$:

 $m_{\perp} = \sqrt{2p_{\perp \tau_{jet}} \not p_{\perp} [1 - \cos(\Delta \phi)]}$

 $\Delta\phi$: angle between $p_{\perp au_{\mathsf{jet}}}$ and $\not\!\!p_{\perp}$

[Golonka et al.]

Background for $2j + \tau_{jet} + p_{\perp}$ signature

- Dominant irreducible background: $pp \rightarrow W + 2$ jets
- WZ + 2 jets and $Z \rightarrow \nu\nu$ (→ potentially larger p_{\perp}): less than 3% contribution to background after cuts
- Simulation of background with ALPGEN [Mangano, Moretti, Piccinini, Pittau, Polosa, '02]
 - Exact tree-level matrix elements for $2j + \tau + \nu_{\tau}$ final state
 - Includes W + 2 jets, W pair production and contributions where τ and ν not from (virtual) $W \rightarrow$ e.g.
 - \rightarrow Important for tail of invariant mass $m_{\tau\nu} \gtrsim 100 \text{ GeV}$
- Background distributions cross checked with MADGRAPH [Murayama, Watanabe, Hagiwara, '91; Stelzer, Long, '94; Maltoni, Stelzer, '02] [Alwall, Demin, de Visscher, Frederix, Herquet, Maltoni, Plehn, Rainwater, Stelzer, '07]

S. Hesselbach HEP 2007, Manchester, July 21, 2007 $H^{\pm}W^{\mp}$ production in the MSSM at the LHC 5

Cuts for background suppression

Smearing of jet momenta \rightarrow first approximation of parton showering, hadronisation and detector effects

_	Basic cuts	Additional cuts	
	$ \eta_{ au_{jet}} < 2.5$	$p_{\perp au_{jet}} >$ 50 GeV, $\not\!\!p_{\perp} >$ 50 GeV	
	$ \eta_j <$ 2.5	70 GeV $< m_{jj} <$ 90 GeV	
	$\Delta R_{jj} >$ 0.4	$m_\perp >$ 100 GeV	
	$\Delta R_{ au_{jet}j} > 0.5$	$p_{\perp hj} >$ 50 GeV, $p_{\perp sj} >$ 25 GeV	
	$p_{\perp jet} >$ 20 GeV		

- Basic cuts: define signal region ↔ sensitive detector region
- Additional cuts: suppress background, QCD background, detector miss-identifications

S. Hesselbach

Cuts for background suppression

Results for maximal mixing scenario with $m_{H^{\pm}} = 175$ GeV, tan $\beta = 50$ $\mu = 200$ GeV, $M_{SUSY} = 1$ TeV, $X_t = X_b = 2$ TeV, $M_2 = 200$ GeV, $m_{\tilde{g}} = 800$ GeV

	Integrated cross-section (fb)		
Cut	Background	Signal	S/\sqrt{B}
Basic cuts	560000	63	0.8
$p_{\perp au_{jet}} >$ 50 GeV, $\not\!\!p_{\perp} >$ 50 GeV	22000	25	1.6
70 GeV $< m_{jj} <$ 90 GeV	1700	21	5
$m_\perp >$ 100 GeV	77	15	16
$p_{\perp hj} >$ 50 GeV, $p_{\perp sj} >$ 25 GeV	28	9.3	17

For calculation of S/\sqrt{B} : $\mathcal{L}_{int} = 300 \text{ fb}^{-1}$; 30% τ detection efficiency

S. Hesselbach

Results MSSM with real parameters

Maximal mixing scenario

 μ = 200 GeV, $M_{
m SUSY}$ = 1 TeV, X_t = X_b = 2 TeV, M_2 = 200 GeV, $m_{\tilde{g}}$ = 800 GeV

S. Hesselbach HEP 2007, Manchester, July 21, 2007

8

Results MSSM with real parameters

Maximal mixing scenario

 μ = 200 GeV, $M_{\rm SUSY}$ = 1 TeV, X_t = X_b = 2 TeV, M_2 = 200 GeV, $m_{\tilde{g}}$ = 800 GeV

→ Fake peak in background!

Results MSSM with real parameters

Resonant scenario with $m_{H^{\pm}} = 175 \text{ GeV}$, $\tan \beta = 11 \mu = 3.3 \text{ TeV}$, $M_L = M_E = 500 \text{ GeV}$, $M_Q = M_U = 250 \text{ GeV}$, $M_D = 400 \text{ GeV}$, $A_t = A_b = 0$, $M_2 = 500 \text{ GeV}$, $m_{\tilde{g}} = 500 \text{ GeV}$

 \rightarrow very large 1-loop corrections to CP-odd Higgs mass

(2-loop effects much smaller \rightarrow perturbative expansion under control)

 $\Rightarrow m_A > m_{H^{\pm}} + m_W$ possible

[Akeroyd, Baek, '02]

10

 \rightarrow resonant *s*-channel production

Results MSSM with complex parameters

- Higgs sector analyzed with FEYNHIGGS [Hahn, Hollik, Heinemeyer, Weiglein]
 Cross checks with CPSUPERH [Lee, Pilaftsis, Carena, Choi, Drees, Ellis, Wagner]
- Phases ϕ_{μ} and ϕ_{A_t} : largest effects on Higgs sector

Resonant scenario $m_{H_3^0} > m_{H^{\pm}} + m_W$ $m_{H_{+}}=175 \text{ GeV}, \tan\beta=11$ 10^3 10^2 10^2

-π/4 -π/2

ង់

-3π/

 \Rightarrow large phase effects possible

0

ಸ/2 ಸ/4 π 3π/4

Summary

- Signature: $2j + \tau_{jet} + \not p_{\perp}$
- Dominant irreducible background: $pp \rightarrow W + 2$ jets
- Appropriate cuts on p_{\perp} , m_{jj} , m_{\perp}
- Detectable signal at LHC in MSSM

→ maximal mixing scenario: 150 GeV
$$\leq m_{H^{\pm}} \leq$$
 300 GeV if tan β = 50 tan $\beta \gtrsim$ 30 if $m_{H^{\pm}}$ = 175 GeV

- \rightarrow resonant scenarios: also for smaller tan β
- CP-violating MSSM
 - Large phase effects possible in resonant scenarios
 - CP-odd rate asymmetry $\lesssim 1\%$