

W Boson production and properties at CDF

Emily Nurse

W production at the Tevatron

The electron and muon channels are used to measure W properties, due to their clean experimental signature.

The large mass (~80 GeV) of W bosons gives their decay products large $p_{\rm T}.$

W events can be used to:

- constrain the QCD part of the production mechanism: W charge asymmetry.
- measure W properties: W mass (see talk by Oliver Steltzer-Chilton) and W width.

Detecting W decay particles at CDF

W charge asymmetry: introduction

Parton Distribution Functions describe the momentum distribution of partons in the (anti-)proton. They are constrained by fits to data.

Emily Nurse

W charge asymmetry: from e⁺⁽⁻⁾ asymmetry

- Since p_L^v is not known the W[±] rapidity cannot be reconstructed ∴ traditionally the *electron charge asymmetry* is measured.
- The V-A structure of the $W^{+(-)}$ decay favours a backward (forward) $e^{+(-)}$ "diluting" the W charge asymmetry.

Emily Nurse

W charge asymmetry: direct measurement

This CDF measurement (performed in $W \rightarrow e_V$ channel):

 p_L^v determined by constraining $M_W = 80.4 \text{ GeV} \rightarrow \text{two possible } y_W$ solutions. Each solution receives a weight probability according to:

a) V-A decay structure

b) W cross-section: $\sigma(y_w)$

(Process iterated since σ (y_W) depends on asymmetry)

Emily Nurse

W width : introduction

- Predicted very precisely within the Standard Model by summing the leptonic and hadronic partial widths: $\Gamma_W^{SM} = 2091 \pm 2 \text{ MeV}$ [PDG: J. Phys. G 33, 1]
- Deviations from this prediction suggest non-SM decay modes.
- $\Gamma_{\rm W}$ is an input to the W mass measurement: $\Delta M_{\rm W} \sim \Delta \Gamma_{\rm W} / 7$

Ideally we would reconstruct the invariant mass of the decay products to measure Γ_W , since ν isn't detected we reconstruct the transverse mass:

$$m_T = \sqrt{2 p_T^{\ l} p_T^{\ v} (1 - \cos \phi_{lv})}$$

Emily Nurse

W width : Analysis strategy

- Simulate m_T distribution with a dedicated *fast* parameterised MC (using a Breit-Wigner lineshape).
- MC simulates QCD (RESBOS Balazs et.al. PRD56, 5558) and QED (Berends & Kleiss Berends et.al. ZPhys. C27, 155) corrections.
- Utilise $\mathcal{Z} \rightarrow \mathcal{I}($ and $\mathcal{W} \rightarrow \mathcal{I}_{\mathcal{V}})$ data to

calibrate the detector to a high precision.

• Fit m_T templates (with Γ_W varying) to the data, fit range: 90-200 GeV

optimised to reduce total uncertainty

W width : Lepton p_T

 μ^{\pm} momentum measured in central tracker - scale and resolution calibrated using Z $\rightarrow \mu\mu$ resonance.

e[±] energy measured in EM calorimeter - scale and resolution calibrated using Z→ee resonance and E/p in W→ev

W width : Neutrino p_T

- p_T^{v} inferred from E_T^{miss}
- U=(U_x, U_y)= \sum_{towers} Esinθ (cos∅, sin∅) vector sum over calorimeter towers
 - Excluding those surrounding lepton
- $p_T^{v} = E_T^{miss} = -(U + p_T^{lep})$
- U mostly comes from gluon radiation from incoming quarks (also Underlying Event (UE), photons from bremsstrahlung).

- Accurate predictions of U (QCD radiation, UE, hadronisation and detector response to hadrons) is difficult (and slow) from first principles.
- Devise an ad-hoc parameterised model of the recoil in terms of the boson p_T , tuned to the recoil in $Z \rightarrow \mathcal{U}$ events (where the Z p_T can be reconstructed).

W width: results

W width: systematic uncertainties

	ΔΓ _w [MeV]		
	Electrons	Muons	Common
Lepton Scale	21	17	12
Lepton Resolution	31	26	0
Simulation	13	0	0
Recoil	54	49	0
Lepton ID	10	7	0
Backgrounds	32	33	0
p _T (W)	7	7	7
PDF	16	17	16
QED	8	1	1
W mass	9	9	9
Total systematic	78	70	23
Statistical	60	67	0
Total	98	97	23

CDF Run II Preliminary (350 pb⁻¹)

W width: world average

World's most precise single measurement!

Indirect Width Measurement

Emily Nurse

Summary

- W charge asymmetry measurement will help constrain PDFs (due to be updated this summer).
- W width measurement (world's most precise measurement!) - consistent with the Standard Model prediction and indirect measurement.

Back-up slides

e asymmetry

Hadronic Recoil: U

- Accurate predictions of U is difficult (and slow) from first principles.
- U simulated with ad-hoc parameterised model, tuned on $\mathcal{Z} \rightarrow \mathcal{I} \mathcal{I}$ data.
- U split into components parallel (U₁) and perpendicular (U₂) to Z p_T
- 7 parameter model describes the response and resolution in the U_1 and U_2 directions as a function of the Z p_T .

• Systematic comes from parameter uncertainties (limited Z stats).

Emily Nurse

Hadronic Recoil: U (p_T^v)

- U split into components parallel (U_{||}) and perpendicular (U_⊥) to charged lepton.
- Many distributions used to cross check the model in $\mathcal{W} \rightarrow \mathcal{W}$ data:

Emily Nurse

Backgrounds

Backgrounds

