LHC / ILC interplay in SUSY searches

Gudrid Moortgat-Pick

(K Desch, J Kalinowski, GMP, K Rolbiecki, WJ Stirling, JHEP 0612:007, 2006)

Outline

- SUSY parameter determination and LHC/ILC interplay
- Case study: chosen scenario with heavy sfermions
- Numerical results: expectations for LHC
- Numerical results: ILC strategy and LHC/ILC interplay
- Conclusions

Supersymmetry

- In which range do we expect SUSY?
 - at least some light particles should be accessible at 500 GeV
 - best possible tools needed to get maximal information out of only the part of the spectrum
- To reveal the structure of the underlying physics, it is important to determine the parameters in a model-independent way and test all model assumptions experimentally

Soon we will have LHC data, but LHC/ILC interplay will be essential and both machines cover a large range of the parameter space!

Discovery of SUSY

- Expectations at the LHC:
 - → Coloured SUSY partners: discovery reach $m_{q,g}^{\sim}$ < 2-2.5 TeV
 - Non-coloured partners:
 - a) via Drell-Yan m_{χ} < 250 GeV
 - b) via cascade decay chains

- Parameter determinations: in specific SUSY breaking models
- At the ILC:
 - wohead direct production of all kind of SUSY particles up to kinematical limit $\sqrt{s/2}$
 - indirect mass bounds due to high precision
 - precise model-independent parameter determination
- Particularly promising field for LHC/ILC interplay studies!

LHC / ILC interplay

- If fundamental parameters determined: allows mass predictions for heavier particles
 - significant increase of sensitivity for searches at the LHC and unique identification of particles in decay chain
 - Powerful test of the model

K. Desch, K. Kalinowski, GMP, M. Nojiri, G. Polesello, JHEP 2004

	M_1	M_2	μ	aneta
input	99.1	192.7	352.4	10
LC_{500}	99.1 ± 0.2	192.7 ± 0.6	352.8 ± 8.9	10.3 ± 1.5
LHC+LC ₅₀₀	99.1 ± 0.1	192.7 ± 0.3	352.4 ± 2.1	10.2 ± 0.6

strong improvement in parameter determination via interplay!

NMSSM versus MSSM

- SUSY scenario in the NMSSM: Higgs and light particle sector (neutralino / chargino) show no hints for model distinction
- measured at ILC (500 GeV): $m_{\tilde{\chi}_{1}^{\pm}}, m_{\tilde{\chi}_{1,2}^{0}}, \sigma(e^{+}e^{-} \to \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{0}\tilde{\chi}_{2}^{0})$
 - Consistent within MSSM-analysis
 - Predictions:

$$\begin{array}{l} m_{\tilde{\chi}^0_3} = [352,555] \, \mathrm{GeV} \rightarrow \mathrm{pure\ higgsino} \\ m_{\tilde{\chi}^0_4} = [386,573] \, \mathrm{GeV} \rightarrow \mathrm{larger\ gaugino\ comp.} \\ m_{\tilde{\chi}^\pm_2} = [450,600] \, \mathrm{GeV} \end{array}$$

 $\Rightarrow \tilde{\chi}_3^0$ not accessible at LHC

However: $\tilde{\chi}_3^0$ in underlying NMSSM scenario has large gaugino component

→ visible at LHC → inconsistency

S Hesselbach, GMP, F Franke, H Fraas, 2005

Model inconsistency determined via LHC/ILC

Tricky case with heavy sfermions

- Feature of, for instance, focuspoint inspired scenarios
 - features: very heavy squarks, sleptons, heavy H, A but light SM-like h and light gluino and light charginos / neutralinos
 - challenging for the LHC.....but is the ILC then the right machine?
 - some analysis done at LHC, but within mSUGRA and still difficult
- Our approach: take a focuspoint-inspired scenario, but do not impose any assumption on the SUSY breaking mechanism and apply LHC / ILC analysis
- How well is it possible to
 - determine the underlying fundamental parameters?
 - predict masses of heavier states?

Chosen scenario

MSSM parameters:

 $M_1 = 60 \text{ GeV}$, $M_2 = 121 \text{GeV}$, $M_3 = 322 \text{ GeV}$, $\mu = 540 \text{ GeV}$, $\tan \beta = 20 \text{ GeV}$

Resulting masses:

$m_{\tilde{\chi}_1^{\pm}}$	$m_{\tilde{\chi}_2^{\pm}}$	$m_{\tilde{\chi}^0_1}$	$m_{ ilde{\chi}^0_2}$	$m_{\tilde{\chi}^0_3}$	$m_{ ilde{\chi}^0_4}$	$m_{ ilde{g}}$
117	552	59	117	545	550	416

m_h	$m_{H,A}$	$m_{H^{\pm}}$
119	1934	1935

light gauginos/higgsinos, light gluino, light h but heavy H's, A

$m_{\tilde{ u}}$	$m_{ ilde{e}_{ m R}}$	$m_{ ilde{e}_{ m L}}$	$m_{ ilde{ au}_1}$	$m_{ ilde{ au}_2}$	$m_{ ilde{q}_{ m R}}$	$m_{ ilde{q}_{ m L}}$	$m_{ ilde{t}_1}$	$m_{ ilde{t}_2}$
1994	1996	1998	1930	1963	2002	2008	1093	1584

heavy squarks and sleptons in the multi-TeV range

What is expected that LHC could do?

- In principle: all squarks should be kinematically accessible
 - \rightarrow stops: $BR(\tilde{t}_{1,2} \rightarrow \tilde{g}t) \sim 66\%$ background t large, no new interesting channels open in decays
 - other quarks: decay mainly via gluino and q, but reconstruction of heavy squarks at 2 TeV difficult
 - assume: mass resolution of squarks with uncertainty of ~50 GeV
- Light gluino: perfect for LHC (high rates, several decays)

Mode	$\tilde{g} \to \tilde{\chi}_2^0 b \bar{b}$	$\tilde{g} \to \tilde{\chi}_1^- q_u \bar{q}_d$	$\tilde{\chi}_1^+ \to \tilde{\chi}_1^0 \bar{q}_d q_u$	$\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \ell^+ \ell^-$	$\tilde{t}_{1,2} \rightarrow \tilde{g}t$	$\tilde{\chi}_1^- \to \tilde{\chi}_1^0 \ell^- \bar{\nu}_\ell$
BR	14.4%	10.8%	33.5%	3.0%	66%	11.0%

- clear dilepton edge from neutralino decay $\delta(m_{\tilde{\chi}^0_3}-m_{\tilde{\chi}^0_1})\sim 0.5~{
m GeV}$

$$\delta(m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0}) \sim 0.5 \text{ GeV}$$

 \rightarrow decay via chargino less promising (escaping ν , 3-body decay)

What is expected at the ILC (500) ?

- Kinematically only two light neutralinos and light chargino accessible
 - in reality: light neutralino production below 1 fb

$\sigma(\tilde{\chi}_i \tilde{\chi}_j)/\text{fb}$	$\sqrt{s} = 3$	$50 \; \mathrm{GeV}$	$\sqrt{s} = 5$	00 GeV	$\sqrt{s} = 8$	00 GeV	$\sqrt{s} = 13$	300 GeV
2000-0000000000000000000000000000000000	(-, +)	(+,-)	(-,+)	(+, -)	(-,+)	(+, -)	(-, +)	(+, -)
$\tilde{\chi}_1^0 \tilde{\chi}_2^0$	0.58	0.08	0.93	0.07	1.76	0.07	3.14	0.08
$\tilde{\chi}_1^0 \tilde{\chi}_3^0$	-	-	-		0.24	0.27	0.13	0.28
$\tilde{\chi}_1^0 \tilde{\chi}_4^0$	===	\ <u></u>		_	0.05	0.11	0.02	0.20
$\tilde{\chi}_2^0 \tilde{\chi}_2^0$	0.06	0.05	0.49	0.05	2.06	0.05	4.91	0.07
$\tilde{\chi}_2^{ar{0}} \tilde{\chi}_3^{ar{0}}$			S-0	-	1.44	0.79	1.18	0.53
$\tilde{\chi}_2^0 \tilde{\chi}_4^0$	-	8-8	S S	-	0.23	0.09	0.55	0.13
$\tilde{\chi}_3^0 \tilde{\chi}_3^0$	-	_	_				< 0.001	< 0.001
$\tilde{\chi}_3^0 \tilde{\chi}_4^0$	=	-	-	_	_	_	38.53	24.97
$\tilde{\chi}_4^0 \tilde{\chi}_4^0$	-	S	-	_	_	- :	0.002	0.001
$\tilde{\chi}_1^+ \tilde{\chi}_2^-$	-	-	-	_	1.36	0.88	1.05	0.68
$ ilde{\chi}_2^+ ilde{\chi}_2^-$	-		-	_	_	_	143.23	25.95

- → light pure $\tilde{\chi_1^0} \sim \tilde{B}$, $\tilde{\chi_2^0} \sim \tilde{W}$: production suppressed by heavy \tilde{e}_L , \tilde{e}_R exchange
- heavier $\tilde{\chi}_3^0$, $\tilde{\chi}_4^0 \sim \tilde{H}$ with specific CP-phases: rather high rates!
- heavy pair $\tilde{\chi}_2^+ \tilde{\chi}_2^- \sim H$: also high rates!

Promising channel: light chargino

- So forget light neutralino production at ILC(500) for today ...
- Use only (light) chargino production, provides high rates
 - \sim subsequent decays: $\tilde{\chi}_1^- \to \tilde{\chi}_1^0 e^- \bar{\nu}_e, \ \tilde{\chi}_1^0 \mu^- \bar{\nu}_\mu, \ \tilde{\chi}_1^0 d\bar{u} \ \tilde{\chi}_1^0 s\bar{c}$
- Due to very limited information, use two energies and polarized beams!

\sqrt{s}/GeV	(P_{e^-}, P_{e^+})	$\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)/\mathrm{fb}$	$\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) B_{slc} e_{slc}/\text{fb}$
350	(-90%, +60%)	6195.5	1062.5 ± 4.0
	(+90%, -60%)	85.0	14.6±0.7
500	(-90%, +60%)	3041.5	521.6±2.3
	(+90%, -60%)	40.3	6.9±0.4

uncertainties: efficiency 50%, 1 σ stat. uncertainties, $\Delta P / P = 0.5\%$

to separate background WW: use semileptonic chargino decay channel, since mass constraints applicable

EPS07@Manchester

page 10

Mass measurements at LHC+ILC

- Expected chargino mass resolution:
 - in the continuum: up to 0.5 GeV
 - threshold scan:

$$m_{\tilde{\chi}_1^\pm}=117.1\pm0.1~\mathrm{GeV}$$

- Neutralino mass resolution:
 - use either energy $\tilde{\chi}_1^- \to \tilde{\chi}_1^0 \ell^- \bar{\nu}_\ell$ or invariant mass distribution $\tilde{\chi}_1^- \to \tilde{\chi}_1^0 q_d \bar{q}_u$

$$m_{\tilde{\chi}_1^0} = 59.2 \pm 0.2 \text{ GeV}$$

wo together with LHC mass information ($\delta(m_{\tilde{\chi}^0_2}-m_{\tilde{\chi}^0_1})\sim 0.5~{
m GeV}_1$:

page 11

$$m_{\tilde{\chi}^0_2} = 117.1 \pm 0.5 \text{ GeV}$$

Determine fundamental parameters

On which parameters depend the process?

- Parameters in the gaugino/higgsino: M_1 , M_2 , μ , tan β
- But heavy virtual particles: m_v, m_l, m_{qL}, m_{qR}

Strategy, 1st step

- Use measured masses and polarized cross sections
- Analytical conversion and derive / fit parameters
 - \rightarrow do χ^2 test for M₁, M₂, μ and m_{ν}
 - BR not sensitive to heavy slepton masses
 - was necessary to fix tanβ (took several values) to get convergence of fit! (strong correlations among parameters)
- Results:
 - \rightarrow contradiction to theory for tan β < 1.7
 - $450 \le \mu \le 750 \text{ GeV}, \quad 1800 \le m_{\tilde{\nu}_e} \le 2210 \text{ GeV}$ $59.4 \le M_1 \le 62.2 \text{ GeV}, \quad 118.7 \le M_2 \le 127.5 \text{ GeV},$

 M_1 , M_2 good (~5%), but μ and m_{ν} rather weak (~16%) (limited info)

Strategy, 1st step

- Masses and cross sections are not enough to constrain five parameter space due to strong correlations
- Allowed ranges migrate with change of tan β

Need another observable to get better constraints

Strategy, 2nd step -- spin correlations

- Which further observable could be used?
 - Forward-backward asymmetry of the final lepton / quark

(angle between incoming beam and final lepton or quark)

- Dependent on spin correlations of decaying chargino:
 - riangle amplitude squared: $e^- + e^+ o \tilde{\chi}_1^+ + \tilde{\chi}_1^-$ and $\tilde{\chi}_1^- o \tilde{\chi}_1^0 + \ell^- + \bar{\nu}$

$$|T|^2 = |\Delta_{f_1}|^2 |\Delta_{f_2}|^2 \sum_{fin.sp.} \underbrace{(P^{\lambda_{f_1}\lambda_{f_2}}P^{*\lambda'_{f_1}\lambda'_{f_2}})}_{\text{spin-density matrix}} \times \underbrace{(Z_{\lambda_{f_1}}Z_{\lambda'_{f_1}}^*)}_{\text{decay matrix}} \times \underbrace{(Z_{\lambda_{f_2}}Z_{\lambda'_{f_2}}^*)}_{\text{decay matrix}}$$

$$|T|^2 \sim PD_iD_j + \Sigma_a^P \Sigma_a^D D_j + \Sigma_b^P \Sigma_b^D D_i + \Sigma_{ab}^P \Sigma_a^D \Sigma_b^D$$

cross section $A_{fb}(I^-)$ $A_{fb}(I^+)$ not needed here

'new contributions'

EPS07@Manchester Gudrid Moortgat-Pick page 15

How important are spin correlations?

Impact of the 'new contributions' on A_{fb}:

- strong influence of spin correlations: A_{fb} within [5%, 20%]
- and also sensitivity to heavy sneutrino mass!

Strategy, 2nd step -- leptonic A_{fb}

- use measured masses, cross sections and leptonic Afb
- since decay also depends on unknown left slepton mass, use SU(2) relation:

$$m_{\tilde{e}_{\rm L}}^2 = m_{\tilde{\nu}_e}^2 + m_Z^2 \cos(2\beta)(-1 + \sin^2\theta_W)$$

include also statistical and polarization uncertainty for A_{fb}:

\sqrt{s}/GeV	(P_{e^-},P_{e^+})	$A_{\mathrm{FB}}(\ell^-)/\%$	$A_{\mathrm{FB}}(\bar{c})/\%$
350	(-90%, +60%)	4.42±0.29	4.18±0.74
	(+90%, -60%)	_	_
500	(-90%, +60%)	4.62 ± 0.41	4.48 ± 1.05
	(+90%, -60%)	_	_

use only (- +) values due to statistical uncertainty

Strategy, 2nd step -- results

Results:

not necessary to fix tanβ any more !!!

 $59.7 \le M_1 \le 60.35 \text{ GeV}, \quad 119.9 \le M_2 \le 122.0 \text{ GeV},$ $500 \le \mu \le 610 \text{ GeV}, \quad 14 \le \tan \beta \le 31$ $1900 \le m_{\tilde{\nu}_e} \le 2100 \text{ GeV}$

$$500 \le \mu \le 610 \text{ GeV}, \quad 14 \le \tan \beta \le 31$$

$$1900 \le m_{\tilde{\nu}_e} \le 2100 \text{ GeV}$$

Improvements:

- constraints for multi-TeV sneutrino mass by factor 2, up to 5% accuracy !
- accuracy of M₁, M₂ by factor 5
- accuracy of µ by factor 1.6 and tan ß now included!

Strategy, 2nd step -- mass predictions

- Due to rather precise parameter determination:
 - use these allowed parameters and predict, for instance, the possible ranges for the masses of the heavier chargino and neutralino states

-0

$$\begin{array}{l} 506 < m_{\tilde{\chi}^0_3} < 615\,Ge\,V \\ 512 < m_{\tilde{\chi}^0_4} < 619\,Ge\,V \\ 514 < m_{\tilde{\chi}^\pm_2} < 621\,Ge\,V \end{array}$$

- Obviously 1.3 TeV as 2nd ILC energy stage would be sufficient
- Rather precise parameter determination important and possible at 500 GeV (even in such tricky scenarios with limited information only)
 - important input for future upgrade strategies

Strategy, 3rd step -- also hadronic Afb

- Redo analysis without assuming SU(2) relation between slepton masses
 - squark masses constrained from LHC
 - strategy as before: use masses, cross sections, leptonic Afb
- Include also A_{fb} from hadronic distribution:
 - charm identification needed : assume c-tag efficiency of 40% for selection efficiency of 50%
- Results (without using SU(2) relation) :

```
\begin{split} 59.45 &\leq M_1 \leq 60.80 \text{ GeV}, \quad 118.6 \leq M_2 \leq 124.2 \text{ GeV}, \quad 420 \leq \mu \leq 770 \text{ GeV} \\ 1900 &\leq m_{\tilde{\nu}_e} \leq 2120 \text{ GeV}, \quad m_{\tilde{e}_{\rm L}} \geq 1500 \text{ GeV}, \quad 11 \leq \tan\beta \leq 60. \end{split}
```

- again precise parameter determination and constraints for msn
- no upper bound for msel, but consistent with SU(2) relation!

EPS07@Manchester Gudrid Moortgat-Pick page 20

Conclusions

- Tricky case of SUSY: multi-TeV sleptons and squarks
 - only few particles kinematically accessible at ILC with 500 GeV
- Study done without assuming a SUSY breaking scheme!
- Forward-backward asymmetries of the final leptons/quarks: sensitivity to heavy virtual particles
 - get tight constraints even for masses in the multi-TeV range!
- Rather accurate parameter determination possible with Afb
 - allows to predict masses of heavier charginos/neutralinos
- LHC / ILC(500): neither of these colliders alone can resolve such a challenging scenario with multi-TeV squarks and sleptons --> both LHC and ILC required!