QCD-resummation for slepton pair production at hadron colliders

Giuseppe Bozzi

Institut für Theoretische Physik Universität Karlsruhe

HEP 2007 Manchester, 20.07.2007

Giuseppe Bozzi (ITP Karlsruhe)

QCD-resummation for SUSY

Manchester, 20.07.2007 1 / 30

Outline

1 Fixed-order results

- Slepton-pair production at hadron colliders
- Next-to-leading order calculations
- The need for resummation

Resummation formalisms

- Main features of the resummation
- The resummed component
- The matching

Numerical results

- q_T -distribution at the LHC
- Invariant-mass distributions
- Total cross section

Summary and outlook

Outline

1 Fixed-order results

- Slepton-pair production at hadron colliders
- Next-to-leading order calculations
- The need for resummation

Resummation formalisms

- Main features of the resummation
- The resummed component
- The matching

3 Numerical results

- q_T -distribution at the LHC
- Invariant-mass distributions
- Total cross section

Summary and outlook

Slepton-pair production at hadron colliders

• Drell-Yan like process

$$q \bar{q} \to \gamma, Z^0 \to \tilde{l}_i \tilde{l}_j^*$$
 and $q \bar{q}' \to W^{\mp} \to \tilde{l}_i \tilde{\nu}_l^* + c.c.$

- Sleptons are often light \Rightarrow decays into LSP + SM lepton \Rightarrow clean signal.
- Cross sections given by

$$(\Delta)\sigma = \sum_{a,b} \int_{\tau}^{1} \mathrm{d}x_{a} \int_{\tau/X_{a}}^{1} \mathrm{d}x_{b} (\Delta) f_{a/h_{1}}(x_{a},\mu_{F}) \ (\Delta) f_{b/h_{2}}(x_{b},\mu_{F}) (\Delta) \hat{\sigma}_{ab}(z,\mathcal{M};\alpha_{s}(\mu_{R}),\frac{M}{\mu_{F}},\frac{M}{\mu_{R}})$$

where $(\Delta)\hat{\sigma}_{ab}$ is computed perturbatively

$$(\Delta)\hat{\sigma}_{ab}(z,M;\alpha_s(\mu_R),\frac{M}{\mu_F},\frac{M}{\mu_R}) = \sum_{n=0}^{\infty} \left(\frac{\alpha_s(\mu_R)}{\pi}\right)^n (\Delta)\sigma_{ab}^{(n)}(z,M;\frac{M}{\mu_F},\frac{M}{\mu_R}) \ .$$

NLO calculations

• Partonic *M* and q_T distributions at $\mathcal{O}(\alpha_s)$:

$$\begin{split} \frac{\mathrm{d}\hat{\sigma}_{ab}}{\mathrm{d}M^2} &= \hat{\sigma}_{ab}^{(0)}(M)\,\delta(1-z) + \frac{\alpha_s}{\pi}\,\hat{\sigma}_{ab}^{(1)}(M,z) + \mathcal{O}(\alpha_s^2),\\ \frac{\mathrm{d}^2\hat{\sigma}_{ab}}{\mathrm{d}M^2\,\mathrm{d}q_T^2} &= \hat{\sigma}_{ab}^{(0)}(M)\,\delta(q_T^2)\delta(1-z) + \frac{\alpha_s}{\pi}\,\hat{\sigma}_{ab}^{(1)}(M,z,q_T) + \mathcal{O}(\alpha_s^2), \end{split}$$
where $z = M^2/s$.

• Squark mixing included in the SUSY-loops.

The need for resummation

- Soft and collinear radiations:
 - * $\frac{\alpha_s^n}{q_T^2} \ln^m \frac{M^2}{q_T^2}$ or $\alpha_s^n \left(\frac{\ln^m(1-z)}{1-z} \right)_+$ terms in the distributions $(m \le 2n-1)$.
 - * Large at small q_T or $z \lesssim 1$.
 - * Fixed-order theory unreliable in these kinematical regions.
 - * Resummation to all orders needed.
 - $\Rightarrow q_T$ -resummation.
 - \Rightarrow Threshold resummation.
 - \Rightarrow Joint resummation.
- Advantages of resummation:
 - * Reliable perturbative results.
 - * Correct quantification of these radiations (even far from critical regions).
 - * Accurate invariant-mass and q_T spectra.

 q_T -distribution \Rightarrow stransverse mass \Rightarrow spin and mass determination.

[Lester, Summers (1999); Barr (2006)]

M-distribution and total cross section \Rightarrow accurate mass determination.

[Bozzi, Fuks, Klasen (2007)]

= nac

Outline

Fixed-order results

- Slepton-pair production at hadron colliders
- Next-to-leading order calculations
- The need for resummation

Resummation formalisms

- Main features of the resummation
- The resummed component
- The matching

Numerical results

- q_T -distribution at the LHC
- Invariant-mass distributions
- Total cross section

Summary and outlook

.

Main features of the resummation

Reorganization of the cross section

$$\mathrm{d}\sigma = \mathrm{d}\sigma^{(\mathrm{res})} + \mathrm{d}\sigma^{(\mathrm{fin})}$$

• $d\sigma^{(res)}$

- * Contains all the logarithmic terms.
- * Resummed to all orders in α_s .
- * Exponentiation (Sudakov form factor).
- $d\sigma^{(fin)}$
 - * Remaining contributions.

The resummed component: conjugate spaces (1)

- Conjugate space(s) introduced ⇒ kinematics naturally factorizes.
- N-moments defined by a Mellin transform

$$F(N) = \int_0^1 \mathrm{d}y \, y^{N-1} \, F(y).$$

Inverse transform:

$$F(y) = \oint_{C_N} \frac{\mathrm{d}N}{2\pi i} y^{-N} F(N).$$

- N-moment of the hadronic cross section taken with respect to $\tau = M^2/s_h$.
- q_T -spectrum: impact-parameter *b*-space defined via a Fourier transform.
- The logarithms:

$$\begin{pmatrix} \ln(1-z) \\ 1-z \end{pmatrix}_{+} \rightarrow \ln^{2}\overline{N} \text{ with } \overline{N} = N \exp[\gamma_{E}]$$

$$\frac{1}{q_{T}^{2}} \ln \frac{M^{2}}{q_{T}^{2}} \rightarrow \ln \overline{b}^{2} \text{ with } \overline{b} = \frac{bM}{2} \exp[\gamma_{E}]$$

The resummed component: conjugate spaces (2)

• Factorization of the hadronic cross sections:

$$\begin{split} \frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}M^2}(\tau, M) &= \sum_{a,b} \int_{\tau}^{1} \mathrm{d}x_{a} \int_{\tau/x_{a}}^{1} \mathrm{d}x_{b} f_{a/h_{1}}(x_{a}, \mu_{F}) f_{b/h_{2}}(x_{b}, \mu_{F}) \hat{\sigma}_{ab}^{(\mathrm{res})}(z; \alpha_{s}(\mu_{R}), \frac{M}{\mu_{F}}, \frac{M}{\mu_{R}}) \\ & \downarrow \\ \frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}M^{2}}(N, M) &= \sum_{a,b} f_{a/h_{1}}(N+1, \mu_{F}) f_{b/h_{2}}(N+1, \mu_{F}) \hat{\sigma}_{ab}^{(\mathrm{res})}(N; \alpha_{s}, \frac{M}{\mu_{R}}, \frac{M}{\mu_{F}}), \end{split}$$

and

$$\frac{\mathrm{d}^{2}\sigma^{(\mathrm{res})}}{\mathrm{d}M^{2}\mathrm{d}q_{T}^{2}}(\tau,M,q_{T}) = \sum_{a,b} \int_{\tau}^{1} \mathrm{d}x_{a} \int_{\tau/x_{a}}^{1} \mathrm{d}x_{b} f_{a/h_{1}}(x_{a},\mu_{F}) f_{b/h_{2}}(x_{b},\mu_{F}) \hat{\sigma}_{ab}^{(\mathrm{res})}(z,q_{T};\alpha_{s}(\mu_{R}),\frac{M}{\mu_{F}},\frac{M}{\mu_{R}})$$

$$\downarrow$$

$$\frac{\mathrm{d}^{2}\sigma^{(\mathrm{res})}}{\mathrm{d}M^{2}\mathrm{d}q_{T}^{2}}(N,M,q_{T}) = \sum_{a,b} f_{a/h_{1}}(N+1,\mu_{F}) f_{b/h_{2}}(N+1,\mu_{F}) \int_{\tau}^{b} \mathrm{d}b J_{0}(b q_{T}) \mathcal{W}_{ab}^{F}(N,b;\alpha_{s},\frac{M}{\mu_{R}},\frac{M}{\mu_{F}}).$$

• The logarithms are included in the functions $\hat{\sigma}^{(\mathrm{res})}$ and $\mathcal{W}^{\textit{F}}.$

ELE DOG

The resummed component: the partonic cross section

• The process-dependence is factorized outside the exponent:

$$\begin{aligned} \mathcal{W}^{F}_{ab}(N,b) &= \mathcal{H}^{F}_{ab}(N) \exp\left\{\mathcal{G}(N,b)\right\}, \\ \hat{\sigma}^{(\mathrm{res})}_{ab}(N) &= \sigma^{(LO)} \, \tilde{C}_{ab}(N;\alpha_{s}) \, \exp\left\{\mathcal{G}(N,L)\right\}. \end{aligned}$$

- \mathcal{H}^{F} and \tilde{C} -functions:
 - * Can be computed perturbatively.
 - * Are process-dependent.
 - * Contain all the finite terms in the limit $N \to \infty$ and $b \to \infty$ (real and virtual collinear radiation, hard contributions).

The resummed component: the Sudakov form factor

• The Sudakov form factor contains the soft-collinear radiation:

$$\mathcal{G}(N,L;\frac{M^2}{\mu_R^2}) = L g^{(1)}(\alpha_s L) + \sum_{n=2}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^{n-2} g_N^{(n)}(\alpha_s L;\frac{M^2}{\mu_R^2})$$

• The logarithm L is

	qT	Joint	Threshold
L=In()	$1+\bar{b}^2$	$ar{b} + rac{ar{N}}{1 + rac{ar{b}}{4 \ ar{N}}}$	Ñ

- q_T-resummation not justified at small b (large q_T) ⇒ +1 in the log (no change at large b).
- Argument of the log in joint resummation: \Rightarrow no subleading terms in perturbative expansions of $\sigma^{(res)}$.
- At NLL accuracy: $g^{(1)}$ and $g^{(2)}$ needed $\equiv \alpha_s^n L^{2n}$ and $\alpha_s^n L^{2n-1}$.

12 / 30

The resummed component: improvements and remarks

- q_T-resummation [Catani, de Florian, Grazzini (2001); Bozzi, Catani, de Florian, Grazzini (2006)]
 - * Universal formalism.
 - * Process-independent Sudakov form factor.
 - * Resummation impact only in the relevant kinematical region.
- Threshold resummation [Sterman (1987); Catani, Trentadue (1989, 1991)]
 - * Consistent inclusion of the collinear radiation in the \tilde{C} -function. [Krämer, Laenen, Spira (1998); Catani, de Florian, Grazzini (2001)]
- Joint resummation [Laenen, Sterman, Vogelsang (2001); Kulesza, Sterman, Vogelsang (2002, 2004)]
 - * Process-independent and universal Sudakov form factor.

[Bozzi, Fuks, Klasen (in prep.)]

The finite component: matching procedure

- Fixed-order theory
 - * Reliable far from the critical kinematical regions ($z \ll 1$, $q_T \gg 0$).
 - * Spoiled in the critical regions (z \sim 1, $q_T \sim$ 0).
- Resummation
 - * Needed in the critical regions.
 - * Not justified far from the critical regions.
- Both contributions important in the intermediate kinematical regions.

- Information from both fixed-order and resummation needed.
- Need to avoid double-counting.
- Consistent matching procedure required:

 $d\sigma^{(fin)} = d\sigma^{(f.o.)} - d\sigma^{(exp)}.$

= 200

Summary: complete resummation formulae

Invariant-mass spectrum

$$\begin{array}{lcl} \frac{\mathrm{d}\sigma}{\mathrm{d}M^2}(\tau,M) & = & \frac{\mathrm{d}\sigma^{(\mathrm{F.O.})}}{\mathrm{d}M^2}(\tau,M) \\ & + & \oint_{\mathcal{C}N} \frac{\mathrm{d}N}{2\pi i} \, \tau^{-N} \Big[\frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}M^2}(N,M) - \frac{\mathrm{d}\sigma^{(\mathrm{exp})}}{\mathrm{d}M^2}(N,M) \Big]. \end{array}$$

• Transverse-momentum spectrum

$$\begin{array}{lll} \frac{\mathrm{d}^2\sigma}{\mathrm{d}M^2\,\mathrm{d}q_T^2}(\tau,M,q_T) & = & \frac{\mathrm{d}^2\sigma(\mathrm{F.O.})}{\mathrm{d}M^2\,\mathrm{d}q_T^2}(\tau,M,q_T) \\ & + & \oint_{\mathcal{C}_N} \frac{\mathrm{d}N}{2\pi i}\,\tau^{-N}\int \frac{b\mathrm{d}b}{2}J_0(q_T\,b) \bigg[\frac{\mathrm{d}^2\sigma(\mathrm{res})}{\mathrm{d}M^2\,\mathrm{d}q_T^2}(N,b) - \frac{\mathrm{d}^2\sigma(\mathrm{exp})}{\mathrm{d}M^2\,\mathrm{d}q_T^2}(N,b) \bigg]. \end{array}$$

- * Far from the critical regions, $d\sigma^{(res)} \approx d\sigma^{(exp)} \Rightarrow$ Perturbative theory.
- * In the critical regions, $d\sigma^{(F.O.)} \approx d\sigma^{(exp)} \Rightarrow$ Pure resummation.
- * In the intermediate regions \Rightarrow Consistent matching.

Outline

Fixed-order results

- Slepton-pair production at hadron colliders
- Next-to-leading order calculations
- The need for resummation

Resummation formalisms

- Main features of the resummation
- The resummed component
- The matching

3 Numerical results

- q_T -distribution at the LHC
- Invariant-mass distributions
- Total cross section

Summary and outlook

q_T -distribution at the LHC

[Bozzi, Fuks, Klasen (2006; in prep.)]

- * SPS1a scenario ($m_{\tilde{l}} \approx 100\text{-}200$ GeV).
- * Finite results at small- q_T , enhancement at intermediate- q_T , finite σ .
- * Improvement of scale dependences: (NLL+LO \leq 5%; LO 10%).
- * Effects of the threshold-enhanced contributions in the intermediate- q_T region.

Invariant-mass distribution at the LHC

[Bozzi, Fuks, Klasen (2007; in prep.)]

- * SPS1a scenario ($m_{\tilde{l}} \approx 100\text{-}200 \text{ GeV}$).
- * Normalization to LO cross section.
- * Small *M*: $d\sigma^{(res)} \approx d\sigma^{(exp)}$; Large *M*: $d\sigma^{(F.O.)} \approx d\sigma^{(exp)}$.
- * Reduced SUSY-loop effects.
- * Joint-exponent reproduces q_T -exponent.
 - \Rightarrow some differences with threshold-resummation (however under control).

Threshold-resummed total cross sections at the Tevatron

- * SPS7 slope.
- * $\sigma \sim 0.1 100$ fb ($\Rightarrow 1$ to 1000 events).
- * NLO and threshold-resummation effects important.
- * Resummation more important for heavier sleptons.
- * Shift in $m_{\tilde{e}_l}$ if deduced from total σ measurement.

Giuseppe Bozzi (ITP Karlsruhe)

Outline

Fixed-order results

- Slepton-pair production at hadron colliders
- Next-to-leading order calculations
- The need for resummation

Resummation formalisms

- Main features of the resummation
- The resummed component
- The matching

3 Numerical results

- q_T-distribution at the LHC
- Invariant-mass distributions
- Total cross section

4 Summary and outlook

Conclusion and outlook

Done

- * Full NLO SUSY-QCD calculations, including squark mixing.
- * Threshold, q_T and joint resummations.

To do

- * Comparison with the Monte Carlo approach.
- * Study of other SUSY particle production processes.
- * Resummation vs. Monte Carlo for other BSM theories (Z').

Appendix

Appendix

Giuseppe Bozzi (ITP Karlsruhe)

QCD-resummation for SUSY

 □□
 ▶
 < □</td>
 ▶
 < □</td>
 >

 Manchester, 20.07.2007
 22

22 / 30

三日 のへの

SUSY cross sections

= 200

SUSY cross sections

[Abdullin et al. (2002)]

Inverse transforms

• There are singularities in the integrand in the (b,N) spaces

$$\oint_{C_N} \frac{\mathrm{d}N}{2\pi i} \, \tau^{-N} \int \frac{b\mathrm{d}b}{2} J_0(q_T \, b) \left[\frac{\mathrm{d}^2\sigma(\mathrm{res})}{\mathrm{d}M^2 \, \mathrm{d}q_T^2}(N,b) - \frac{\mathrm{d}^2\sigma(\mathrm{exp})}{\mathrm{d}M^2 \, \mathrm{d}q_T^2}(N,b) \right].$$

- * e.g. argument of the logarithm, Landau pole, PDFs,...
- * Must be avoided when getting back to physical space.
- * Prescription required.
- Inverse *b*-transform:
 - * Integration contour diverted in the complex plane.
 - * Bessel function replaced by more convenient auxiliary functions. [Laenen, Sterman, Vogelsang (2000)]
- Inverse Mellin transform:
 - * Specific contour avoiding all the poles.
 - * Minimal prescription and principal value resummation.

[Catani, Mangano, Nason, Trentadue (1996); Contopanagos, Sterman (1994)]

ELE NOR

The resummed component: non perturbative effects

- Important non-perturbative (NP) effects for q_T -distributions (large-*b* region).
 - \equiv intrinsic q_T of the partons, inside the hadrons.
- Resummation formula

$$\mathcal{W}_{ab}^{F}(N,b) = \mathcal{H}_{ab}^{F}(N) \exp \left\{ \mathcal{G}(N,b) + F_{ab}^{\mathrm{NP}} \right\}.$$

- NP form factor obtained from experimental data:
 - * Ladinsky-Yuan (LY-G) [Ladinsky, Yuan (1994)].
 - * Brock-Landry-Nadolsky-Yuan (BLNY) [Landry, Brock, Nadolsky, Yuan (2003)].
 - * Konyshev-Nadolsky (KN) [Konyshev, Nadolsky (2006)].

q_T -distribution at the LHC

[Bozzi, BF, Klasen (2006)]

- * SPS1a scenario (slepton masses \approx 100-200 GeV).
- * Importance of the NP effects:

$$\Delta = rac{d\sigma^{(\mathrm{res.+NP})}(\mu=M) - d\sigma^{(\mathrm{res.})}(\mu=M)}{d\sigma^{(\mathrm{res.})}(\mu=M)}.$$

K-factors for associated $\tilde{e}_L \tilde{\nu}_e$ production at the Tevatron

[Bozzi, Fuks, Klasen (2007)]

- SPS1a' SUSY scenario.
- Normalization to LO cross section.
- Close to the threshold:
 - * Resummation effects important (even at low *M*).
 - * $\sigma^{\it NLO}$ dominated by the logs.
 - * $\hat{\sigma} = \hat{\sigma}^{(res)}$ at the permille level.
 - * $\hat{\sigma}^{(f.o.)} = \hat{\sigma}^{(res)}|_{f.o.}$ at the same level.
- SUSY-loop effects reduced.

Dependence of the total σ on unphysical scales (1)

- SPS7 SUSY scenario.
- Theoretical uncertainty estimated by variations of μ_F and μ_R.
- μ_R dependence
 - * Absent at LO.
 - * Introduced at NLO.
 - * Tamed by resummation.
- μ_F dependence
 - * Reduced at NLO.
 - * Further stabilized by resummation.
- Total theoretical uncertainty.
 - * LO: 20%
 - * NLO: 29%
 - * Resummed: 23%

Dependence of the total σ on unphysical scales (2)

[Bozzi, Fuks, Klasen (2007)]

- SPS7 SUSY scenario.
- Theoretical uncertainty estimated by variations of μ_F and μ_R .
- μ_R dependence
 - * Absent at LO.
 - * Introduced at NLO.
 - * Tamed by resummation.
- μ_F dependence
 - * Overcompensated at NLO.
 - * Stabilized by resummation.
- Total theoretical uncertainty.
 - * LO: 7%
 - * NLO: 17%
 - * Resummed: 8%

= nar