

do/dy Distribution of Drell-Yan Dielectron Pairs at CDF in Run II

Jiyeon Han (University of Rochester) For the CDF Collaboration

> EPS July, 19, 2007 Manchester, England

1

Outline

- CDF Run II detector
- Introduction
- Event selection
- Acceptance and efficiencies
- Background
- Systematic uncertainties
- Run II result
- Summary

- ***** Plug calorimeter covers high η region(1.1< $|\eta|$ < 3.6)
- ***** Silicon tracking coverage out to $|\eta| < 2.8$
- * Requiring silicon track matches in forward region reduces background contamination

Feynman Diagram Parton momentum fraction(x) Z_{PP} 0.9 ã 0.8 X₂ = M₂e^{-y}s^{-1/2} $x_1 = M_z e^y s^{-1/2}$ 0.7 ā(x₂) 0.6 0.5 Z_{c} 2º/ 0.4 q(x,) 0.3 0.2 p 0.1 0≞ -3 2 -2 -1 0 3 1 y (Z boson rapidity)

- Parton momentum fractions $(x_{1,2})$ determine Z boson rapidity (y_Z)
- Production measurement in high y_z region probes high x region of PDFs
- Plug-plug (Z_{PP}) event needed to probe highest x region

Introduction

Data set

- Data sample : ~1.1 fb⁻¹
 - Inclusive single central electron trigger
 - Two electron trigger (central or forward)
 - Trigger efficiency measured as a function of electron E_T
 - Overall trigger efficiency ~ 100 %

Total trigger efficiency
 Zcc : 1.0
 Zcp : 0.994±0.001
 Zpp : 0.995±0.001

Selection

- Z selection with two central electrons : Zcc
 - Kinematic selection : $E_T \ge 25 \text{ GeV}$, $|\eta| < 1.1$
 - Two good central electrons
 - Oppositely charged electrons

- Z selection with a central and plug electron : Zcp
 - Kinematic selection : $E_{T} \ge 20 \text{ GeV}$

 $|\eta|$ <1.1 for central, 1.2 < $|\eta|$ <2.8 for plug

- One good central electron and plug electron
- Z selection with two plug electrons : Zpp
 - Kinematic selection : $E_T \ge 25 \text{ GeV}$, 1.2 < $|\eta| < 2.8$
 - Two good plug electrons
 - Same side events
 - One electron candidate must have a matched silicon track (~87%)

7/20/07

Jiyeon Han (University of Rochester)

Acceptance and Efficiencies

• Measured Acceptance × Efficiencies in Boson rapidity

- Geometric and kinematic acceptances modeled using Pythia MC and GEANT detector simulation
- ✤ MC tuned to data
 ⇒ Energy resolution and scale
 - \Rightarrow Efficiencies
- Total Acceptance × Efficiencies is 33.5%.
- A × E is flat up to $|y_z| \sim 2.0$ and non-zero up to $|y_z| \sim 2.9$ by adding Z_{PP} region

Backgrounds for Z/γ^{*}

- Background estimation (QCD+EWK)
 - QCD Background is 0.92±0.06%
 - EWK background is 0.11±0.01% (WW,WZ, ttbar inclusive,W+jet)

Systematic study

- Systematic uncertainties determined for
 - Detector material modeling
 - Background estimates
 - Electron identification efficiencies
 - Silicon tracking efficiency
 - Acceptance

 Largest systematic uncertainties associated with measurement of electron ID efficiency

do/dy distribution I

- $d\sigma/dy$ distribution of Z/γ^* (positive and negative rapidity region)

do/dy distribution II

• $d\sigma/dy$ distribution of Z/γ^*

- σ (Z→ee) : 263.3± 0.9(stat.)±3.8(sys.) pb
- No PDF or luminosity uncertainties included

Jiyeon Han (University of Rochester)

7/20/07

do/dy distribution (data/theory)

No PDF or \mathcal{A} uncertainties included in data Theory prediction scaled to measured σ (Z) Only statistic uncertainty considered

CTEQ PDF describes data better

Jiyeon Han (University of Rochester)

do/dy distribution (data/theory)

No PDF or \mathcal{A} uncertainties included in data Theory prediction scaled to measured σ (Z) Only statistic uncertainty considered

NLO calculation with NLL MRST PDF

The data/theory(nlo mrst) of do/dy The data/theory(nnlo) of do/dy Т.Z 1.Z 1.15 = 66.6/30 $\chi^2 = 56.9/30$ 1.15 1.1 1.1 Data/Theory 1.05 Data/Theory 1.05 0.95 0.95 0.9 0.9 0.85 0.85 CDF Run II Preliminary with 1.1 fb⁻¹ CDF Run II Preliminary with 1.1 fb 0.8 ^[] 0.8^L 2.5 0.5 1.5 2 з 0.5 1.5 2 2.5 З **Boson Rapidity Boson Rapidity**

NNLO calculation is slightly better, but not much different Reference for NNLO calculation : Phys.Rev.D69:094008

• NNLO calculation with NNLL MRST PDF

Summary

- We measure d σ /dy distribution of Z/ $\gamma^* \rightarrow e^+e^-$ up to $|y_z| \sim 2.9$
- Total cross section = $263.3 \pm 0.9(stat.) \pm 3.8(sys.) pb$
 - No PDF or luminosity uncertainties included
- Measured $d\sigma/dy$ shape :
 - Can distinguish between PDFs : CTEQ PDFs has better agreement
 - NNLO vs. NLO : NNLO gives marginally better agreement

Backup slide

 $\sigma \times Br(\gamma^*/Z \rightarrow e^+e^-) = 252 \pm 11pb$

Runl result

- 0.05 0.084 0.138 0.227 0.617 1.0 0.374 X₁ 0.031 0.004 0.019 0.011 0.007 80 PDF predictios x, $x_1 = M_z e^Y s^{-1/2} x_2 = M_z e^{-Y} s^{-1/2}$ 70 LO CTEQ4 PDF 60 (qd) λp/(Z/ ^λ)op 30 $66 < M_{\gamma^*/Z} < 116 \text{ GeV/c}^2$ NLO CTEQ4 PDF d quark enhanced modified NLO CTEQ4 PDF CDF 1992-95 Data NLO gluon resummated LO(CTEQ4L), 29.1/27 20 NLO(CTEQ4M), 23.5/27 calculation with CTEQ4 PDF NLO(CTEQ4M-d), 21.3/27 10 VBP(CTEQ4M), 23.6/27 0 0 1.5 2 2.5 0.5 3 1
- not enough to make a distinction better PDF

v

Boson Rapidity

Feynman Diagram of Drell-Yan proccess

- x₁: Parton momentum fraction from proton
- x₂: Parton momentum fraction from anti-proton
- x_{1,2} determine rapidity of Z boson
- What is the rapidity ?

$$y = \frac{1}{2}ln(\frac{E+P}{E-P})$$

(P: momentum in longitudinal direction)

• What is the relation between $x_{1,2}$ and the rapidity in Z boson?

$$P_{Y^*/Z} = (x_1 E_B + x_2 E_B, 0, 0, x_1 E_B - x_2 E_B) \longrightarrow Y = \frac{1}{2} ln(\frac{x_1}{x_2}) \longrightarrow Y = ln(\frac{\sqrt{s} \times x_1}{M})$$

insert $P_{Y^*/Z}$ into rapidity definition $x_1 x_2 = M^{2/s}$

$$E_B$$
 : beam energy in the center of mass frame $s^{1/2}$: total center of mass energy (= $2E_B$)

Et distribution

• Et distribution (data, MC)

Jiyeon Han (University of Rochester)

Theory Prediction

- Total cross section
 - NNLO calculation with NNLL MRST PDF : 251.34pb
 - NLO calculation with NLL MRST PDF : 241.01pb
 - NLO calculation with NLL CTEQ PDF : 236.14pb

Backgrounds for Z/γ^{*} : **QCD**

- Largest background : QCD dijets
- Magnitude obtained from fit to electron isolation distribution
 - Isolation defined as energy contained in a ∆R=0.4 cone around an electron minus the energy of the electron itself
 - Fit isolation distribution for both signal and background contributions
 - Extrapolate the background from high Isolation tail into the signal region
- Total QCD background = 0.92±0.06%

Systematic Uncertainties

• Systematic uncertainties component

Systematic Component	δσ/σ (%)
Material Effect	0.13
Background Estimation	0.44
Tracking Efficiency	0.15
ID Efficiency	1.30
Acceptance	0.13

