Extended Gauge Symmetries and Extra Dimensions at the Large Hadron Collider

Introduction

Signatures &

Discoveries

Searches at the LHC with CMS and ATLAS

New gauge bosons and extra dimensions

Search for Z' in ee and $\mu\mu$ Search for W' in e / μ + E^{miss}

Randall-Sundrum gravitons

Large Extra Dimensions

Measurements

Conclusions

Properties

See also: http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/EXOTICS/ http://cmsdoc.cern.ch/cms/PRS/results/susybsm/susybsm.html

REINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN III. Physikalisches Institut A **Arnd Meyer**

EPS 2007 Manchester

July 19th 2007

bmb+f

Großgeräte der physikalischen Grundlagenforschung

NP Landscape

Supersymmetry

RPC, RPV, ...

MSSM, NMSSM, ...

mSUGRA, GMSB, AMSB, split SUSY, ...

Extra Dimensions

Extra Gauge Bosons (W', Z')

Leptoquarks (1st, 2nd, 3rd Generation)

Compositeness (Lepton and Quark Subst.)

Alternatives (Technicolor, Little Higgs, ...)

Unknown (Signature Based Searches)

Arnd Meyer (RWTH Aachen)

NO W' or Z'!?!

"Beyond" Supersymmetry

- Supersymmetric theories are the most popular theories on the market
- Here: two different approaches to searches for new phenomena
- Extend the gauge sector of the Standard Model, introducing new heavy gauge bosons: W', Z'
- Extra dimensions to address the hierarchy problem: why is gravity so weak?
 - Gravity appears weak since gravitons propagate in 4+n dimensions
 - One fundamental scale M_s ~ O(1 TeV)
 - Many similar collider signatures

Extra Gauge Bosons

- Extended Gauge Symmetries and the associated heavy neutral (Z') and charged (W') gauge bosons are a feature of many extensions of the Standard Model
- Studied in detail in the LHC context are for example
 - Z'_{ψ} , Z'_{χ} , Z'_{η} in E6 and SO(10) GUT groups
 - Left-Right symmetric model (LRM, ALRM)
 - Sequential Standard Model: SM-like W' and Z'

But also

- Models with extra dimensions
- Little/littlest Higgs model
- Higgs-less: Stückelberg Z'
- CDDT parameterization (Carena, Daleo, Dobrescu, Tait)

Extra Dimensions – Many Flavors!

Two classes of models

- ADD (Arkani-Hamed, Dimopoulos, Dvali)

2 or more large (sub mm) EDs gravity propagates freely in the bulk KK excitations cannot be resolved

– **RS** (Randall, Sundrum)

one 5th (infinite) ED with warped geometry gravity is localized on a brane other than the SM KK excitations have spacings of order TeV

New energy domain: pp sqrt(s) = 14 TeV = 7 x Tevatron

New luminosity domain Design L = 10^{34} cm⁻²s⁻¹ = 30 x Tevatron

Beam commissioning from May 2008

First collisions at 14 TeV in July

Up to 156 bunches and L ~ 10³²cm⁻²s⁻¹ by end 2008 (< 4 interactions / crossing)

Up to 1 fb⁻¹ integrated Iuminosity in 2008

At design luminosity: ~100 fb⁻¹/a ~20 interactions / crossing New energy domain: pp sqrt(s) = 14 TeV = 7 x Tevatron

New luminosity domain Design L = 10^{34} cm⁻²s⁻¹ = 30 x Tevatron

Beam commissioning from May 2008

<image>

April 2007

First collisions at 14 TeV in July

Up to 156 bunches and L ~ 10³²cm⁻²s⁻¹ by end 2008 (< 4 interactions / crossing) Up to 1 fb⁻¹ integrated luminosity in 2008

At design luminosity: ~100 fb⁻¹/a ~20 interactions / crossing

A Toroidal LHC Apparatus

Electromagnetic Calorimeters

Solenoid

Vidth: 44m Diameter: 22m Weight: 7000t

Shielding

Forward Calorimeters / End Cap Toroid

Toroidal LHC Ap

Α

Both detectors optimized for:

Muon Detectors

Higgs searches

Top properties

Searches for New Physics

Expect essentially complete detectors for physics run 2008

TRACKER

Silicon Microstrips Pixels

Total weight : 12,500 t Overall diameter : 15 m Overall length : 21.6 m Magnetic field : 4 Tesla

MUON BARREL Drift Tube Resistive Plate Chambers (DT) Chambers (RPC)

Cathode Strip Chambers (CSC) Resistive Plate Chambers (RPC) Selenoid

Main Signatures

W'

Ζ'

Randall-Sundrum gravitons

ADD large extra dimensions

Universal extra dimensions

Black holes

ee, μμ, jj

$$e + E_T^{miss}, \mu + E_T^{miss}, jj$$

ee, μμ, γγ

monojets, -γ DY spectrum

eeee, $\mu\mu\mu\mu$, ee $\mu\mu$, jj+E^{miss}_T

high mass, high multiplicity, high sphericity

Main Signatures

W'

Ζ'

Randall-Sundrum gravitons

ADD large extra dimensions

Universal extra dimensions

Black holes

ee, μμ, jj
e+
$$E_{T}^{miss}$$
, μ+ E_{T}^{miss} , jj
ee, μμ, γγ

monojets, -γ DY spectrum

eeee, $\mu\mu\mu\mu$, ee $\mu\mu$, jj+E^{miss}_T

high mass, high multiplicity, high sphericity

Z' – Early Physics

- All results either based on full simulation, or validated fast simulation
- Studied impact of alignment in muon channel – CMS example:
 - ◆ "First data", ~ 0.1 fb⁻¹, coarse alignment
 - * "Long term", ~ 1 fb⁻¹, full alignment with tracks
- Mass resolution
 - 12% for m = 1 TeV "early"
 - 4% (9%) for 1 (5) TeV "long term"
- Better resolution in ee channel
 - For electron with $E_T = 1 \text{TeV}$ (CMS): $\Delta E_T / E_T \sim 0.6\%$
- Small impact on discovery reach

Note: fluctuations "not to scale"!

Neutral Gauge Bosons: Z'

Selection

- 2 leptons (e, μ) with opposite charge
- Isolation (but watch muons in calorimeter) optional
- Back-to-back in r-phi optional
- For muons: collect photons in calorimeter to recover energy
- Overall efficiencies (CMS):
 - ~ 75 85% (µµ @ m = 1 TeV, 5 TeV) ~ 80% (ee @ m = 4 TeV)
- **Electrons:**

energy resolutionidentification

Muons:

- \oplus identification \oplus identification
- Θ p_T resolution
- Note CMS ECAL saturation for Z' above ~ 4 TeV

Z' Discovery Reach

Impact of experimental and theoretical uncertainties studied in detail, example:

PDF uncertainties (CTEQ 6 error PDF's) → cross sections and acceptances for signal and background → 5% (m = 1 TeV) to 25% (m = 5 TeV)

Arnd Meyer (RWTH Aachen)

- Sequential Standard Model: W' as heavy copy of SM W boson
 - Couplings like SM W
 - No exotic decays

Selection

- Single isolated muon or electron, quality cuts
- E_T^{miss} calculated from depositions in electromagnetic and hadronic calorimeters, corrected for muons
- Overall efficiency about 90%

- Sequential Standard Model: W' as heavy copy of SM W boson
 - Couplings like SM W
 - No exotic decays

Selection

- Single isolated muon or electron, quality cuts
- E_T^{miss} calculated from depositions in electromagnetic and hadronic calorimeters, corrected for muons
- Overall efficiency about 90%

- Sequential Standard Model: W' as heavy copy of SM W boson
 - Couplings like SM W
 - No exotic decays

Selection

- Single isolated muon or electron, quality cuts
- E_T^{miss} calculated from depositions in electromagnetic and hadronic calorimeters, corrected for muons
- Overall efficiency about 90%

- Calculate transverse mass and search for excess over SM backgrounds
 - W
 - Top pairs, WW, WZ, ZZ
 - Instrumental background from QCD

W' discovery reach:

M(W'_{SSM}) > 4.6 TeV

Littlest Higgs Model

- Littlest Higgs Model, Arkani-Hamed et al.: minimal SM extension for solution of hierarchy problem
- Four new gauge bosons: W[±]_H, Z_H, A_H
- Masses strongly constrained due to fine-tuning
- Couplings depend on single parameter θ
- Cross section similar to sequential SM

Discovery (L = 300 fb⁻¹, $\cot\theta$ = 1)

6000

M(W_H) > 5.7 TeV M(Z_H) > 5.1 TeV

July 19, 2007

Dijets and Other Channels

Dijets:

Complementary channel to search for W', Z', RS gravitons (and more)

Different systematics than lepton channels

Other Z' decay channels considered: ττ, ttbar, WW, WZ, RH neutrinos, ...

Arnd Meyer (RWTH Aachen)

Randall-Sundrum Gravitons

One 5th (infinite) ED with warped geometry

Signature: narrow, high mass resonances

106 105 104 $\sigma(fb)$ 103 102 101 250 500 750 1000 1250 1500 √s (GeV) Mass and coupling $(c=\kappa/M_{Pl} \rightarrow width)$

Spin 2 \Rightarrow BF($\gamma\gamma$) ~ 2 x BF(II)

Backgrounds: prompt $\gamma\gamma$, γ + jets, QCD, DY ee

Potential to discriminate RS G and Z'

RS model:

Model parameters:

Randall-Sundrum Gravitons

Properties, or: which Resonance?

Measurements:

- Mass "easy"
- Couplings (decays)
- Width marginal (depending on model), e channel only?
- Cross section challenging to reach precision; ratios?
- Spin need lots of data
- Example: separate spin 2 (RS graviton) and spin 1 (Z')
 - Measure decay angular distribution $\cos(\theta^*)$

Discrimination:

Need all!

 $(c = 0.01-0.1, 300 \text{ fb}^{-1}, 2\sigma)$

RS graviton has also large BF to $\gamma\gamma$

Arnd Meyer (RWTH Aachen)

July 19, 2007

Which Z'?

Probe underlying model by measuring forward-backward asymmetry

Arnd Meyer (RWTH Aachen)

July 19, 2007

Large Extra Dimensions

Main search streams:

Real graviton emission

Apparent energy-momentum non-conservation in 3D-space

 \Rightarrow "Monojets", V+E^{miss}

Direct sensitivity to the fundamental Planck scale M_D

Virtual graviton exchange \Rightarrow Modified SM cross sections

Sensitivity to the theory cutoff $\rm M_{s}$

(M_s expected to be ~ M_D)

Large Extra Dimensions (ee, $\mu\mu$, $\gamma\gamma$)

Large Extra Dimensions (Monojets)

- Real graviton production
- Jet + missing E_T signature
- Experimentally "challenging"
- Can probe extra dimensions up to M_D = 6 – 9 TeV with 100 fb⁻¹

SN-ATLAS-2001-005

Universal Extra Dimensions

SM particles can propagate in small (TeV⁻¹ size) ED; compactification radius R KK particles produced in pairs

KK-parity; decay cascades down to lightest KK-particle = KK photon

 μ trigger thresholds lower than for e

Micro Black Holes

ATLAS Atlanti

Page 30

Arnd Meyer (RWTH Aachen)

Conclusions

- Detailed studies of the LHC discovery potential for resonant and nonresonant dilepton (and diphoton) production
 - Some systematics will only be known after start-up
- Discovery reach for extra gauge bosons W' and Z'
 - First 100 pb⁻¹ beyond Tevatron
 - ♦ With 10 fb⁻¹ ~ 3 TeV
 - ♦ With 100 300 fb⁻¹ ~ 5 TeV
- Models can be discriminated using angular distributions
- RS gravitons: can cover theoretically preferred region with < 100 fb⁻¹
- Complementary channels to look for signs of large extra dimensions
- Have to look in all channels to be prepared for the unexpected

Previous Limits

Resonances (W', Z', ~RS-Graviton):

M > 1 TeVDØ and CDF Run II

Large Extra Dimensions:

 $M_s > 1.43 \text{ TeV}$ DØ Run I+II (GRW formalism)

Di-Electron Invariant Mass Spectrum

Arnd Meyer (RWTH Aachen)

July 19, 2007

Z' Discovery Reach

Model	Γ/M	$Z' \rightarrow \mu^+ \mu^-$	$\sigma^{LO} \cdot Br$, full interference, fb		
	%	BR in %	(PYTHIA)		
			1 TeV/c ²	3 TeV/c ²	5 TeV/c ²
Z_{SSM}	3.1	3.0	610	2.8	0.050
Z_{ψ}	0.6	4.0	340	1.7	0.032
Z_{η}	0.7	3.4	370	1.8	0.035
Z_{χ}	1.3	5.7	500	2.2	0.038
Z_{LRM}	2.2	2.3	500	2.3	0.040
Z_{ALRM}	1.6	8.6	740	3.7	0.077

Constant NNLO k-factor 1.35 applied

95% CL limits about 700 GeV higher at largest masses

Systematic Uncertainties (typical)

Experimental

- Luminosity: 5%
- Shape and normalization of signal and background
- Alignment

Theoretical

- PDF uncertainties from CTEQ 6.1 error PDF's → cross sections and acceptances for signal and background → 5% (m = 1 TeV) to 25% (m = 5 TeV)
- Renormalization / factorization scale (up to 25% for m = 5 TeV)
- Higher order corrections

Dijets

Complementary channel to search for W', Z', RS gravitons (and more)

Arnd Meyer (RWTH Aachen)