

Z boson production at DØ

Chad Jarvis

University of Maryland

European Physical Society HEP 2007 Conference July 20 2007

Z Boson Production at the Tevatron

Only di-lepton channels practical

Leading order $q\bar{q} \rightarrow Z \rightarrow \ell \ell$

100,000 $Z \rightarrow e^+e^-(\mu^+\mu^-)$ events per ${\rm fb}^{-1}$ with standard cuts

Z bosons analyses can test:

- Parton distribution functions
- QCD at NNLO
- Resummation formalism

Outline for rest of talk

- Apparatus
- Two Analyses:
 - Rapidity of the Z boson
 - p_T of the Z boson
- Conclusion and Outlook

The Tevatron

- $p\bar{p}$ collider, $\sqrt{s} = 1.96$ TeV
- Highest energy accelerator in the world

Run II Integrated Luminosity

19 April 2002 - 1 July 2007

- Approximately 3 fb⁻¹ delivered
- Data are still being taken

C. Jarvis (UMD)

Z boson at DØ

The DØ Detector

• Electron coverage for $|\eta| < 1.1$ and $1.5 < |\eta| < 3.2$

• Uniform muon coverage for $|\eta| < 2.0$

C. Jarvis (UMD)

Z boson at DØ

Z Boson Rapidity and Fractional Momentum

The rapidity y of the Z boson is defined as:

$$y = \frac{1}{2} \ln \frac{E + p_L}{E - p_L}$$

where *E* is the Energy of the *Z* boson and p_L is the component of its momentum along the beam direction.

Large values of |y| maximize $|x_1 - x_2|$. This can test the parton distribution functions (PDFs) for large and small values of *x*.

The momentum fractions x_1 and x_2 carried by the partons which produce a *Z* boson are related to the *Z* boson rapidity *y* by:

$$x_{1,2} = \frac{M_{Z/\gamma^*}}{\sqrt{s}} e^{\pm y}$$

Probing the Parton Distribution Functions

The Tevatron can probe the PDFs at large Q^2 for $10^{-3} \le x \le 1$

(hep-ex 0411051)

Boson Rapidity and Electron Pseudorapidity

y is the rapidity of the Z boson, η is the pseudorapidity of an electron

• Large values of |y| correspond to large values of lepton η .

• Forward lepton identification is crucial.

$Z \rightarrow e^+e^-$ Rapidity Analysis

Event Selection:

- |η| < 3.2</p>
- 71 < *M*_{ee} < 111 GeV
- p_{T,1(2)} > 25(15) GeV

Data set: 400 pb^{-1} 18k Z/γ^* events selected

Goals

- Determine $d\sigma/dy$
- Compare to NLO + NNLO theory
- Constrain PDFs for new ranges of (Q^2, x)

$$\frac{1}{\sigma} \left(\frac{d\sigma}{dy} \right) = \frac{(\epsilon \times A)_{avg}}{N_{total}^{obs} - N_{total}^{bkg}} \frac{N_i^{obs} - N_i^{bkg}}{\Delta_i (\epsilon \times A)_i}$$

- $\epsilon \times A$: Monte Carlo (ResBos+PHOTOS)
- Backgrounds: QCD multi-jet, up to 6%

Z Rapidity Final Results

- Most precise Z boson rapidity measurement with largest rapidity range. Accepted for publication in PRD (hep-ex 0702025).
- Inner (outer) error bar is the statistical (total) uncertainty
- Statistics limited

Transverse Momentum of the Z boson

Z boson p_T :

- *p_T* zero at leading order
- Generated mostly through NLO initial state gluon radiation
- Cross section converges for large *p*_T using perturbative QCD theory
- Cross section diverges for small p_T using perturbative QCD theory
- Resummation CSS formalism allows the cross section to be calculated including all orders in *α_s* at low *p_T*

Resummation Formalism

Plots from PRD 56:5558

- Cross section diverges using perturbative QCD for small *p_T* due to soft gluon radiation
- Fix with the resummation CSS formalism
- Resummation has a parameter g_2 which determines the peak of p_T distribution

Z Boson p_T and Forward Rapidity

- For high rapidity, resummation theory may require extra terms dependent on x
- New terms broaden the p_T distribution for $x < 10^{-2}$
- Would affects the *W* and Higgs bosons
- Could be significant at the LHC

hep-ph 0410375

$Z \rightarrow e^+e^- p_T$ Analysis

Goals

- Determine $d\sigma/dp_T$
- Test resummation formalism and NNLO QCD
- Measure g_2
- Look for broadening of distribution for |y| > 2
- Data: 960 pb⁻¹.
- Similar event selection as rapidity analysis, except:
 - p_T > 25 GeV
 - Central calorimeter electrons only
- Acceptance and Efficiency determined by same method as rapidity analysis
- Same backgrounds as Z rapidity analysis

Unfolding

The detector resolution, kinematic cuts, and lepton efficiencies all affect the observed p_T distribution. The process of going from the observed distribution to the true distribution is denoted as unfolding.

Use RUN program (Regularized Unfolding) by Blobel for unfolding

C. Jarvis (UME

The Z boson p_T Distribution

Error bars include statistical and systematic uncertainties. Data and theory agree well: $\chi^2/ndf = 16.2/13$.

C. Jarvis (UMD)

Z boson at DØ

Conclusion and Outlook

- Z bosons provide precise test of the PDFs, QCD at NNLO, and the resummation formalism
- 100,000 $Z \rightarrow \ell \ell$ events per fb⁻¹ with standard cuts
- More data to be analyzed, more data being taken

Available Now

- Shape of the Z boson rapidity distribution most precise measurement (hep-ex 0702025 accepted for publication in PRD)
- Preliminary measurement of the Z boson p_T distribution to 50 GeV

Coming Soon

- Precise measurement of g₂
- Extend p_T measurement to 260 GeV; include forward electrons
- Study p_T broadening