Search for New Physics with Photons at the Tevatron

Shin-Shan Yu

Fermi National Accelerator Laboratory

for the CDF and D0 collaborations

2007 Europhysics Conference on High Energy Physics, Manchester, England

Outline

- Motivations
- Tevatron and detectors
- How to suppress photon background
- Model-inspired search
 - Target for one particular model and optimize for sensitivity
 - Compositeness e*e→eeγ
 - GMSB SUSY γγMET
- Signature-based search
 - Driven by the Run I $\gamma\gamma eeMET$ event and $\gamma\mu MET$ excess
 - γγΜΕΤ
 - γγe, γγμ
 - γγγ
 - $e/\mu + \gamma + X$, X = MET, γ , or e/μ
- Conclusion

Theoretical Motivation

Experimental Motivation

CDF Run I eeyy+MET event

- 86 pb⁻¹
- Dominant SM from WWγγ:
- 8×10⁻⁷ events
- Total Bg: 10⁻⁶ events
- PRL 81, 1791 (1998)
- CDF Run I μγ+MET excess
 - 86 pb⁻¹
 - 11 observed
 - 4.2 ± 0.5 expected
 - PRL 89, 041802 (2002)
- Motivate signature-based searches of γγ+X and ℓγ+X at Run II
 - γγΜΕΤ
 - γγe, γγμ
 - γγγ
 - $e/\mu + \gamma + X$, X = MET, γ , or e/μ

A hint of new physics?

Tevatron Performance

- CDF and D0 have > 2.5 fb⁻¹ of data on tape (3 fb⁻¹ delivered)
- Record initial luminosity: 2.9×10³² cm⁻²s⁻¹
- Expect 4-8 fb⁻¹ by 2009
- Will focus on ~1 fb⁻¹ results in this talk

Detectors

Measure EM transverse shower profile at shower maximum

- γ : shower in the EM calorimeter with no associated track
- Multi-purpose detector: tracking chamber, EM (ECAL) and Had calorimeters (HCAL), and muon chamber

How to Suppress Photon Backgrounds

- Photons not produced in hard scattering process
- π^0 , K_s, and η in jets
 - Most of the energy deposited in the EM calorimeter
 - Require isolated photons
 - EM shower profile consistent with single photon.
- Electron bremsstrahlung or tracking inefficiency
 - Road from the EM cluster to the event vertex
 - Search for hits along the road
 - Reduces electron by a factor of 3 to 7

Shin-Shan Yu

Search for Excited Electrons $e^* \rightarrow e_\gamma$

- Possible sign of compositeness
 - m(f*) and compositeness scale Λ
- Look in Contact Interaction channel qq→ee*→eeγ
 - Single EM or di-EM triggers
 - $\begin{array}{ll} & 2 \text{ isolated electrons } (\text{E}_{\text{T}}{}^{1} > 25 \text{ GeV}, \\ \text{E}_{\text{T}}{}^{1} > 15 \text{ GeV}), \ 1 \text{ isolated photon} \\ (\text{E}_{\text{T}} > 15 \text{ GeV}), \ |\eta_{\text{det}}| \ < 1.1 \text{ or } 1.5 < \\ |\eta_{\text{det}}| \ < 2.5 \end{array}$
 - ee control sample
 - Dominant bg: Zγ
 - Pythia MC and corrected to NNLO cross-section (Hamberg, van Neerven, Matsuura)

Search for Excited Electrons e*

- Optimize minimum requirement on $m(e\gamma)$
 - Use second leading electron for m(e^{*}) ≤ 200 GeV
 - Use electron which give $m(e_{\gamma})$ closer to the search regon for $m(e^*) > 200$ GeV
- For m(e^{*}) < 300 GeV, optimize cuts on the $\Delta R(e_2,\gamma)$
- No excess, 95% CL limit for compositeness scale Λ = 1 TeV, m(e*)> 756 GeV

140

Missing E_, GeV

 $\Lambda = 70 \text{ TeV}$

 $\dots \Lambda = 90 \text{ TeV}$

···· Λ = 100 TeV

Shin-Shan Yu

Nexpected

MFT

20

40

Jets: midcone, size 0.5

60

- Uses CAL $|\eta| < 4.0$
- $\Delta \phi$ (leading jet, MET) < 2.5 radians

80

100

120

Expected MET from GMSB

- SUSY breaking mediated by gauge interactions $\rightarrow \gamma \tilde{G}$
 - LSP is gravitino
 - Snowmass Slope SPS 8 model
 - Single parameter Λ determines the effective scale of SUSY breaking
- Single-EM trigger
- Require two isolated central photons with $E_T > 25$ GeV
 - Photon vertex consistent with primary: $\epsilon = (95.8 \pm 0.1)\%$
 - Photon vertex: line along pre-shower detector and 4 layers of ECAL, σ = 2.3 ±0.3 cm

Search for GMSB SUSY in yyMET

Backgrounds

- Fake MET from jets: MET shapes from Z->ee and multi-jet samples, normalized to the low MET region in the γγ sample
- Real MET from W_{γ}, W_j: apply e-> γ rate rate (~1.4%) to the MET in e γ events
- Ζγγ, Wγγ: CompHep MC (x-check with Madgraph)
- No excess, use binned MET distributions to set 95% CL limit:
 - Λ > 88.5 TeV, $m\chi_1^0$ > 120 GeV, $m\chi_1^+$ > 220 GeV

Shin-Shan Yu

y

Search for Anomalous yyMET Events

- Diphoton trigger
- Central photons with Et > 13 GeV
- All backgrounds estimated from data
- Fake MET
 - parameterize fake MET
 - dijet sample for jet energy resolution
 - 0-jet events in loose photon and Z->ee samples for UE and MI
- Real MET
 - Apply $e > \gamma$ rate (0.4-2%) to $e\gamma$ events
- Beam Halo, Cosmic
 - Remove photons with beam halo topology
 - Require EM timing consistent with collision time or remove photons close to trackless muon hits
 - Extrapolate from out of time events

For MET > 50 GeV. 4 observed,
 1.6 ± 0.3 expected

See Max Goncharov's talk

Search for Anomalous yye, µ Events

- Diphoton trigger
- 2 central photons with Et
 > 13 GeV and 1 lepton Et
 > 20 GeV
- *W*γγ and Zγγ (MadGraph)

γγε	6.82±0.75	3
γγμ	0.79±0.11	0

Ht = scalar sum of Et from photons, leptons, jets, and MET

- A denominator times fake rate for:
 - jets faking leptons: γγ jet
 - jets faking photons: W(Z)γ+jet, W(Z)+2jets
 - electrons faking photons: Zγ, Z+jet

Ζγ

Shin-Shan Yu

Dominant Bg

- Diphoton trigger
- 3 central photons with Et > 13 GeV
- SM tri-photon production estimated from Madgraph with K-factor 1.5±0.2

SM tri-photon	0.80 ± 0.15
Fake from jets	1.4 ± 0.6
Total	2.2± 0.6
Observed	4

Search for Anomalous ly+X Events

- Motivated by the CDF I γμ MET excess
- Repeat the same kinematic requirements
- Inclusive lepton or photon triggers
- Basic objects:
 - Central lepton (e,µ) > 25 GeV, central photon > 25 GeV
- X = MET, lepton, or photon
 - MET > 25 GeV
 - Photon > 25 GeV
 - Loose central electron Et > 20 GeV, forward electron > 15 GeV, central muon Pt > 20 GeV

Background

- Wγ, Ζγ, Wγγ, Ζγγ: Madgraph MC
- Fake photons from electrons
- Fake photons or leptons from jets: study isolation shapes in QCD events and golden leptons

Search for Anomalous ly+X Events

	Exp.	Obs.
eγMET	94.8±8.1	96
μγΜΕΤ	55.7±7.1	67
eeγ	39.0±4.8	53
μμγ	26.1±3.1	21
γγε	0.53±0.13	0
γγμ	0.10±0.06	0
γμ e	1.0±0.3	0

Conclusion

- Both CDF and D0 have performed extensive modeldependent and signature-based searches with photon final states
- No hint of new physics in 1 fb⁻¹ of Run II data
 - CDF I excess can not be confirmed.
- Improve analysis techniques
- Results from other photon final states and with 2-8 times more data will come out in the future
 - γγτ, γγb, γγj and more
- Keep looking. Something unexpected before LHC?

Backup Slides

Control Sample of Search for e*

m_{e^*} [GeV]	$m(e_2,\gamma) \; [{ m GeV}]$	$m(e\gamma) \; [{ m GeV}] \; ({ m closest to} \; m_{e^*})$	EC/EC	EC γ	$\Delta R(e_2,\gamma)$
100	> 90	-	no	no	< 1.8
200	> 165		no	no	< 2.8
300	50 (1999)	> 290	no	no	all
400	1200	> 370	yes	yes	all
500	<u></u>	> 445	yes	yes	all
600		> 515	yes	yes	all
700	200	> 600	yes	yes	all
800	<u>—</u>	> 705	yes	yes	\mathbf{all}
900	-	> 800	yes	yes	all
1000	200	> 900	yes	yes	all

y.

BR e^{*} -> e γ when Λ = 1 TeV

(me*)	BR(e*->eγ)	S (NNLO) X BR (pb)
100	0.27	35
200	0.21	7.3
300	0.15	2.2
400	0.11	0.67
500	0.08	0.23
600	0.06	0.08
700	0.05	0.02
800	0.04	0.006
900	0.03	0.002
1000	0.03	0.0004

Gauge-mediated interaction

Search for GMSB in yyMET

- Basic Snowmass Slope SPS 8 Model
 - Number of messenger = 1
 - Messenger mass = $2 * \Lambda$
 - tan β = 15
 - Sign of the Higgsino mass $\mu > 0$
- Hits on the road
 - Recover electron efficiency from 93% to 98,6%
 - Photon anti-track efficiency still 91%
- Require preshower hits from at least one of the photons
 - E = 1-0.2*2 = 96%
- MET > 30 GeV, expected 9.8±1.1, observed 16 events
- MET > 60 GeV, expected 1.5±0.4, observed 3 events

Electron Mis-identified as Photons

- Compare Z peak from ee and e_{γ}
- Get Et dependence from MC
- Normalize to data
- Silicon-track rejections reduce the fake rate by a factor of 3-4

SM Production Cross-section

Process	(pb)
Wγ (ΔR > 0.2)	27.20
$Z\gamma (\Delta R > 0.2)$	6.86
Wyy ($\Delta R > 0.2$)	0.13
Ζγγ (ΔR > 0.2)	0.09
γγγ (Et>10 GeV, η < 1.2)	0.008

Search for Anomalous yye, µ Events

Before applying Phoenix rejection			
Source	electron	muon	
$Z\gamma\gamma$	$0.904 \pm 0.023 \pm 0.083$	$0.552 \pm 0.017 \pm 0.050$	
$W\gamma\gamma$	$0.170 \pm 0.012 \pm 0.016$	$0.086 \pm 0.008 \pm 0.008$	
Fake $l + \gamma \gamma$	$0.131 \pm 0.004 \pm 0.053$	$0.004 \pm 0.003 \pm 0.002$	
$ l\gamma + \text{jet} \rightarrow \gamma $	$0.475 \pm 0.025 \pm 0.312$	$0.133 \pm 0.013 \pm 0.090$	
$ l\gamma + e \rightarrow \gamma $	$5.140 \pm 0.340 \pm 0.584$	$0.017 \pm 0.017 \pm 0.002$	
Total	6.82 ± 0.75	0.79 ± 0.11	
Data	3	0	

Search for Anomalous *l*γ+X Events

	Dominant Background
<i>ί</i> γΜΕΤ	Wγ
ίίγ	Ζγ
γγе	Ζγ
γγμ	Fakes from jets
γμ e	Ζγ

μγ MET Kinematical Distributions 1

μγ MET Kinematical Distributions 2

The ee_γ Kinematical Distributions 1

The eeγ Kinematical Distributions 2

