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> Heavy-1on collision experiments aim to produce (and detect) a new
form of matter. Plasma of “liberated” quarks and gluons.

The method is very simple: smash heavy-ions to produce a system with

extended energy density. The aim is to understand QCD

4 Alternative methods: numerical lattice simulations...
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Kinetic equations for the distribution function of charged particles
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0, F* = J”

Vlasov approximation C=0
Linear response analysis: 0 J* ~ —[[#Y A,

4 We are interested in time scales shorter than binary collision
time scales

4 If C=0, and the system is in a steady state will it persist in such
state”?

Long-range forces may drive the system out of equilibrium
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Two methods for stability analysis:

1) Energy considerations:

Analyze the potential and see whether any perturbation destabilizes
the system

2) Normal modes analysis:

Perturbe the equilibrium and study the (linearized) plasma
equations. Fluctuations are ~ exp(—iwt)

Growthrate | ~ Im w

Note that if ['is sufficiently small ¢ ~ 1 / I can be so large to be

irrelevant for our problem

Ex. In thermonuclear tusion it 1s enough to have t Z ls
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CLASSIFICATION OF
INSTABILITY

1) Configuration space (macroscopic)
Ex. the plasma tends to expand

2) Velocity space (departure from the imitial distribution)
Ex. two stream instability

Electrostatic instabilities: growing accumulation of charge

Electromagnetic instabilities: growing accumulation of current

density (pinching)




“WEIBEL’” INSTABILITY

A mechanism to explain the rapid thermalization (or 1sotropization) by
Mrowczynski Phys. Lett. B 214, 587 (1988) employs Weibel instabilities known in
QED since the ‘50

C“Trapped particles" produce currents that

B = Z cos(kx)
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“WEIBEL’” INSTABILITY

A mechanism to explain the rapid thermalization (or 1sotropization) by
Mrowczynski Phys. Lett. B 214, 587 (1988) employs Weibel instabilities known in

QED since the ‘50

B = Z cos(kx)
N
O O OO

C“Trapped particles" produce currents that
lead to a growth of the magnetic fields

“Untrapped particles” tend to cancel the
magnetic fields

In order to have an instability there
must be an anisotropic distribution

1IN momentum

Numerical simulations seem to
indicate that such a mechanism is
not able to produce the sudden
thermalization of the system

( Arnold, Lenaghan, Moore,
Strickland, Yafte ...)
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CRITERIA FOR INSTABILITY

A sufficient condition for instability (assuming parity invariant
distribution) 1s given by the Penrose criterion (seee.g. Arnold etal. hep-ph/0307325):

®The mode with wave number q i1s unstable when the matrix

¢>6" + 11 (0, q)

has a negative eigenvalue

A

q=0
In terms of the effective potential / ¢

Ver(9) = 5(¢*67 +119(0, q))¢” o
q#:O

For q=0 the system 1s stable. Dynamical instabilities do not

correspond to tachyons.
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FLUID EQUATIONS IN QCD

Derivation (Manuel-Mrowczynski arXiv:hep-ph/0606276):

Covariant continuity equation

(@) = [ 9400 D,nk = 0

p

T () = / pp” f(p, )

@« ° ”»
Energy-momentum conservation

D, T" — 2{F," nt} = 0

Current density j“(aj) = —% (nu“ > gr--r [nu'u}) ;

acts as a source term for the gauge fields: D, F*" (z) = j¥(x)

Ideal-fluid ML) —Sn (e
(no dissipation) T (3) = L(e(z) + p(a)) {ut(z), u” (z)

All quantities are matrices

1 a
Res— Bl )
in color space e.g. o 0faf T 3" ap
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FLUCTUATIONS

Small colored fluctuations of density, energy density, pressure and plasma
velocity, around their stationary and colorless values

n(x) =n+4+ on(x), e(x) = €+ de(x)
p(z) =p+dp(z),  ui(z)=a"+ dut(z)

Continuity equation and energy momentum conservation give
5 relations, but we have 6 unknowns (because U y = 1o

We need an extra relation that 1s given by the equation of state:

p(z) = c5 e(x)

In the conformal limit Cg =2 / \/g

however one can take this as a parameter for the fluid approach
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the last 1s the linearized relativistic Euler equation. We analyze
separately the colorless and colored components




Substituting the expression of the fluctuation we get
D 0utt (D jon e
utD e (e & b ol
& piu Doyt — (DY —uu, D" )op- gnu, B

the last 1s the linearized relativistic Euler equation. We analyze
separately the colorless and colored components

[ e
Colorless components: 5 5 Opg = 0
ey

The colorless components correspond to sound waves. The colored
components are more involved.
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COLORED COMPONENTS

In the stationary state the
color current vanishes

; (05 = g5
whereas with fluctuations 53& e 5 (n 5U'Z + 0ng U'u)

in linear response theory 5]5(k) = _Hgby(k)Au,b(k) ;

A% polarization tensor
ab function of fluid variables

Instead of studying the fluctuations of hydrodynamical quantities
we study the fluctuations of the gauge fields.

As in QED we say that the system 1s unstable when the gauge
field grows exponentially. The assumption is that the colored

fluctuations will not be damped at short time scales.
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EQUATIONS OF MOTION

The gauge field obey the [kgguy S mprae H/,Lv(k,)i| A, (k) =0

equation of motion

Defining the dielectric tensor gV ()i e éﬂzj (k)

In the Coulomb gauge det [kzéiﬁ' — k'kd — wzeij(k)} —

For a thermally equilibrated plasma

Longitudinal mode Transverse mode

Solutions:
w2:w§+c§k2 w2:w§+k2

Instabilities (solutions with Im(w) > () ) are absent
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® Color fluctuations

Aim: describe jet quenching as a collective phenomenon. Kinetic
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the plasma 1s EXCITED (and destabilized) by the propagating jet

Dielectric tensor of the total system in the “cold beam” approx.

2

S 2 o w kakﬂ w?e i1.9 j 1. 2—1{2 i
Si”(w,k):(l—%)ézﬁ— . Jt<vk+vk_<w >w)

w? w?—c2k? w? w—k-v (w—k-v)?

w2

where w? = w? + wW? e Lo
t P jet wg
t




PLASMA + JET TOY MODEL
® Both with Fluid

Plasma traversed by a jet: ® Both are neutral
® Color fluctuations

Aim: describe jet quenching as a collective phenomenon. Kinetic
energy of the jet 1s transfered to the gauge fields via the instabilities:
the plasma 1s EXCITED (and destabilized) by the propagating jet

Dielectric tensor of the total system in the “cold beam” approx.

2

S 2 o w kakﬂ w?e i1.9 j 1. 2—1{2 i
Sij(w,k):(l—%)ézﬁ— . Jt<vk+vk_<w >w)

w? w?—c2k? w? w—k-v (w—k-v)?

w2

where w? = w? + w? e Lo
t p Jet (2
t

We look for unstable modes of the system as a function of the

poramsiets. kvl casf — k- v b andc;




UNSTABLE MODES

Main features:

* Instabilities only for velocity of the jet larger than the speed
of sound of the plasma (as for the Mach-cone Casalderrey-

Solana et. al hep-ph/0411315)

* Momentum of the collective mode k smaller than a threshold
value

* With increasing values of b the unstable modes grows faster

% Non trivial dependence on 9
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4 Unstable for ci<v <1

4 Maximum for velocities v ~ 0.7-0.8

4 For v=1, the instability disappears(dimensional contraction which
occurs in the eikonal limit, see e.g. Jackiw hep-th/9112020)

4 The threshold value of the momentum decreases with

increasing velocity
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4 Unstable for c<v

4 Has a maximum for v =1
4 The threshold value of the momentum increases with
increasing velocity




OBLIQUE CASE
v=0.9

4 For v~c, modes collinear with v are

dominant.
4 For ultra-relativistic velocities collinear
modes are suppressed and dominant modes

0~ m/4

Time scale for the instability ~1-2fm/c

have

0.1




PRELIMINARY FROM
KINETIC THEORY ANALYSIS

v=0.6

o
—0=0
0=m/4
...... 0=3m/8| -
- - 0=n/2

*FOI’ V<<1 aﬂ modes seem to be equaﬂy

unstable

4 For ultra-relativistic velocities collinear
modes are suppressed and dominant modes
have large angles




COMPARISON KINETIC-FLUID

Transverse modes comparison

/s B

Rather good agreement.
The fluid approach underestimates the growth rate of the
instability.




SUMMARY

%k Heavy-ion collisions give a unique setting for

understanding QCD

%k Plasma instabilities may play a role in the jet-quenching

%k While traveling across the plasma jet degrade losing energy
and momentum exciting the collective modes of the system

%k Similar results with kinetic theory (HTL) valid for g<<1

%k Outlook: calculation of energy loss, more complex
configurations
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Elliptic flow: anisotropy in the momentum distribution of the hadrons
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ELLIPTIC FLOW AND HYDRO

Elliptic flow: anisotropy in the momentum distribution of the hadrons

Overlapping region in
peripheral collisions
A

space anisotropy
Hydrodynamics !
pressure anisotropy

v

momentum anisotropy

: .
Hydro model FHENIX Data STAH Data I.
& T ' H
S KT * A4A
op+p o

o
W

@ Pressure anisotropy
converted into velocity

anisotropy:

9 gl
e N L

o
N

Anisotropy Parameter v,
o

=]

Transverse Momentum p ; (GeV/c)

Open problem: hydro requires very short equilibration times ~0.6
fm/c how does the system equilibrate so quickly?




® An ultrasonic jet produces
a Mach shock-wave

®The angle of emission of

partons is simply given by
cos Oy ~ ¢,/ c

trigger jet




Casalderrey-Solana et. al hep-ph/0411315

® An ultrasonic jet produces
a Mach shock-wave

o The angle of emission of et
rigger je

partons is simply given by
cos Oy ~ ¢,/ c

They find Oy ~ 1.2 in good agreement with experimental
data.




MACH CONE AND HYDRO
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i with hydro do not give the
| Mach-cone structure. However
| they considered only colorless

components!

General idea: if hydro can reproduce soft phenomena, then it
might be able to reproduce some aspects of jet quenching.
Our idea: include color fluctuations




Kinetic equations for quarks, antiquarks and gluons

) g, o ,
EP'”.DI,-LQ[IL xT) —+ 3 Ij'l {-F:.'.:u'. r f_] Q pP.Tr '}' = ( In VlaSOV

) approximation one
P DuQ(p.z) — 5 1" {Fou(2), 3, Q(p,2)} neglects the

. { o PR e W — 1S1
p'D,Gp,x) + %p“ {_.F,-W (x). rfi; G(p. ;r;} = ( COHlSlon terms

-g
And Maxwell equations D, F"(z) = éj{ ()

Considering small fluctuations around an equilibrium distribution
Qp,z) = frh(pa) +0Q(p, ) . Q(p,z) = fily(po) +0Q(p, x) | G(p,x) = fpi(pa) + 6G(p,x)

We get the polarization
tensor 1n linear response i e TS
analysis
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High transverse momentum partons lose energy in matter prior to

forming hadrons. Suppression of the away-side yields at high p .
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High transverse momentum partons lose energy In matter prior to
forming hadrons. Suppression of the away-side yields at high p .

® A jet loses energy mainly by
radiative processes

®'To describe this phenomenon
QCD has to be supplemented with

medium-induced parton energy loss

Many models on the market, see e.g. hep-ph/0304151




