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 Heavy-ion collision experiments aim to produce (and detect) a new 
form of matter. Plasma of “liberated” quarks and gluons. 
The method is very simple: smash heavy-ions to produce a system with 
extended energy density.  The aim is to understand QCD

 Alternative methods: numerical lattice simulations...  

BNL-Collaboration
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Kinetic theory
Kinetic equations for the distribution function of  charged particles

∂f

∂t
+ v ·∇xf + F ·∇pf = C

∂µFµν = Jν

Vlasov approximation C=0

 We are interested in time scales shorter than binary collision 
time scales

 If C=0, and the system is in a steady state will it persist in such 
state?
Long-range forces may drive the system out of equilibrium 

Linear response analysis: δJµ ∼ −ΠµνAν
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Stability analysis
Two methods for stability analysis:

1) Energy considerations:
Analyze the potential and see whether any perturbation destabilizes 
the system

2) Normal modes analysis:
Perturbe the equilibrium and study the (linearized) plasma 
equations. Fluctuations are ∼ exp(−iωt)

Note that if     is sufficiently small                      can be so large to be 
irrelevant for our problem 

Γ t ∼ 1/Γ

Ex. In thermonuclear fusion it is enough to have t ! 1s

Growth rate Γ ∼ Im ω
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Classification of 
instability

1) Configuration space (macroscopic)
Ex. the plasma tends to expand  

2) Velocity space (departure from the initial distribution)
Ex. two stream instability

Electromagnetic instabilities: growing accumulation of current 
density (pinching) 

Electrostatic instabilities: growing accumulation of charge 
q

A0



“Weibel” instability
A mechanism to explain the rapid thermalization (or isotropization) by 
Mrowczynski Phys. Lett. B 214, 587 (1988) .employs Weibel instabilities known in 
QED since the ‘50  
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“Weibel” instability
A mechanism to explain the rapid thermalization (or isotropization) by 
Mrowczynski Phys. Lett. B 214, 587 (1988) .employs Weibel instabilities known in 
QED since the ‘50  

XX

XX

x

y

•“Trapped particles” produce currents that 
lead to a growth of the magnetic fields

•“Untrapped particles” tend to cancel the 
magnetic fields 

In order to have an instability there 
must be an anisotropic distribution 
in momentum 

Numerical simulations  seem to 
indicate that such a mechanism is
not able to produce the sudden 
thermalization of the system
( Arnold, Lenaghan, Moore, 
Strickland, Yaffe ... )  

B = ẑ cos(kx)
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 criteria for Instability
A sufficient condition for instability (assuming parity invariant 
distribution) is given by the Penrose criterion (see e.g. Arnold et al. hep-ph/0307325):

The mode with wave number q is unstable when the matrix 

has a negative eigenvalue 

For q=0 the system is stable. Dynamical  instabilities do not 
correspond to tachyons.

In terms of the effective potential 

Veff(φ) = 1
2 (q2δij + Πij(0,q))φ2

q=0

q≠0

φ

q2δij + Πij(0,q)
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Fluid equations in QCD

Dµnµ = 0

DµTµν − g
2{F

ν
µ , nµ} = 0

Covariant continuity equation

“Energy-momentum  conservation” 

nµ(x) = n(x) uµ(x)
Tµν(x) = 1

2

(
ε(x) + p(x)

){
uµ(x), uν(x)

}
− p(x) gµν

Ideal-fluid
 (no dissipation)

All quantities are matrices
 in color space e.g.

nαβ = n0Iαβ + 1
2naτa

αβ

Derivation (Manuel-Mrowczynski arXiv:hep-ph/0606276):
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Fluctuations
Small colored fluctuations of density, energy density, pressure and plasma 
velocity, around their stationary and colorless values

n(x) = n̄ + δn(x) , ε(x) = ε̄ + δε(x)
p(x) = p̄ + δp(x) , uµ(x) = ūµ + δuµ(x)

uµuµ = 1
Continuity equation and energy momentum conservation give 
5 relations, but we have 6 unknowns (because                      ) .

We need an extra relation that is given by the equation of state: 

p(x) = ca
s ε(x)

In the conformal limit            ca
s = 1/

√
3

however one can take this as a parameter for the fluid approach
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the last is  the linearized relativistic Euler equation. We analyze 
separately the colorless and colored components

n̄ Dµδuµ + (Dµδn) ūµ = 0
ūµDµδε + (ε̄ + p̄)Dµδuµ = 0

(ε̄ + p̄)ūµDµδuν − (Dν − ūν ūµDµ)δp− gn̄ūµFµν = 0

Colorless components:

(
1
c2
s

− k2

ω2

)
δp0 = 0

The colorless components correspond to sound  waves. The colored
components are more involved.

Substituting the expression of the fluctuation we get
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j̄µ = −g
(
n̄ ūµ − 1

3Tr
[
n̄ ūµ

])
= 0In the stationary state the 

color current vanishes

whereas with fluctuations

in linear response theory

δjµ
a = −g

2
(n̄ δuµ

a + δna ūµ)

δjµ
a (k) = −Πµν

ab (k)Aν,b(k) ,

Πµν
ab

polarization tensor 
function of fluid variables

Instead of studying the fluctuations of  hydrodynamical quantities
we study the fluctuations of the gauge fields. 

As in QED we say that the system is unstable when the gauge 
field grows exponentially. The assumption is that the colored 
fluctuations will not be damped at short time scales. 

Colored components
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Equations of motion
[
k2gµν − kµkν −Πµν(k)

]
Aν(k) = 0The gauge field obey the 

equation of motion

 Defining the dielectric tensor εij(k) = δij + 1
ω2 Πij(k)

In the Coulomb gauge  det
[
k2δij − kikj − ω2εij(k)

]
= 0

Instabilities (solutions with                         )    are absent     Im(ω) > 0

ω2 = ω2
p + c2

sk
2

Longitudinal mode

ω2 = ω2
p + k2

Transverse mode
Solutions:

For a thermally equilibrated plasma
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Dielectric tensor of the total system in the “cold beam” approx. 

ω2
t = ω2

p + ω2
jet b =

ω2
jet
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Plasma traversed by a jet:  
• Both with Fluid
• Both are neutral
• Color fluctuations

Aim: describe jet quenching as a collective phenomenon. Kinetic 
energy of the jet is transfered to the gauge fields via the instabilities:
the plasma is EXCITED (and destabilized) by the propagating jet

where

We look for unstable modes of the system as a function of the 
parameters |k|, |v|, cos θ = k̂ · v̂, b and cs



Unstable modes

Instabilities only for velocity of the jet larger than the speed 
of sound of the plasma (as for the Mach-cone Casalderrey-
Solana et. al hep-ph/0411315)

Momentum of the collective mode k smaller than a threshold 
value 

With increasing values of b the unstable modes grows faster

Non trivial dependence on θ

Main features:



k parallel to v

 Unstable for   cs < v < 1
 Maximum for velocities v ~ 0.7-0.8
 For v=1, the instability disappears(dimensional contraction which 

occurs in the eikonal limit, see e.g. Jackiw hep-th/9112020)
 The threshold value of the momentum decreases with 

increasing velocity  
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 Unstable for   cs < v  
 Has a maximum for  v = 1 
 The threshold value of the momentum increases with

increasing velocity

k othogonal to v
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Oblique case
v=0.8 v=0.9

v=1.0
For  v~cs  modes collinear with v are 

dominant. 
For ultra-relativistic velocities collinear 

modes are suppressed and dominant modes 
have

Time scale for the instability ~1-2fm/c
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Preliminary from 
kinetic theory analysis 
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For  v<<1  all modes seem to be equally 
unstable

For ultra-relativistic velocities collinear 
modes are suppressed and dominant modes 
have large angles 



Comparison kinetic-fluid
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Transverse modes comparison

Rather good agreement.
The fluid approach underestimates the growth rate of the 
instability. 



Summary

 Heavy-ion collisions give a unique setting for 
understanding QCD

 Plasma instabilities may play a role in the jet-quenching

 While traveling across the plasma jet degrade losing energy 
and momentum exciting the collective modes of the system

 Similar results  with kinetic theory (HTL) valid for g<<1

 Outlook: calculation of energy loss, more complex 
configurations
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elliptic flow and hydro

Open problem: hydro requires very short equilibration times ~0.6 
fm/c how does the system equilibrate so quickly? 

dv
dt = 1

ρ∇P

Pressure anisotropy 
converted into velocity 
anisotropy: 

Elliptic flow:   anisotropy in the momentum distribution of the hadrons

space anisotropy

 momentum anisotropy 

Overlapping region in 
peripheral collisions

 pressure anisotropy 
Hydrodynamics !
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•An ultrasonic jet produces
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•The angle of emission of 
partons is simply given by

cos θM ! cs/c



Conical flow
Casalderrey-Solana et. al hep-ph/0411315

1

A
trigger jet

2

!M

B

C
•An ultrasonic jet produces
a Mach shock-wave 
•The angle of emission of 
partons is simply given by

cos θM ! cs/c

They find                          in good agreement with experimental 
data. 

θM ! 1.2



Mach Cone and hydro
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Mach cone 
structure ?
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Mach-cone structure. However 
they considered only colorless 
components! 



Mach Cone and hydro

General idea: if hydro can reproduce soft phenomena, then it 
might be able to reproduce some aspects of jet quenching.
Our idea: include color fluctuations
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QCD Vlasov equations
Kinetic equations for quarks, antiquarks and gluons

And Maxwell equations

In Vlasov 
approximation one 

neglects the 
collision terms

Considering small fluctuations around an equilibrium distribution

ipνFµν ! −ΠµνAν

We get the polarization 
tensor in linear response 

analysis
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Jet quenching
High transverse momentum partons lose energy in matter prior to
forming hadrons. Suppression of the away-side yields at high pt .

•A jet loses energy mainly by 
radiative processes 
•To describe this phenomenon 
QCD has to be supplemented with 
medium-induced parton energy loss 

Many models on the market, see e.g. hep-ph/0304151


