Global reanalysis of the nuclear PDFs

JHEP 0705:002,2007 Hannu Paukkunen

University Of Jyväskylä, Department of Physics & Helsinki Institute Of Physics

Kari J. Eskola, Vesa J. Kolhinen, Carlos A. Salgado

Global nPDF analysis in a nutshell

- The Deep Inelastic structure functions F₂ of nuclear targets are different from the free proton ones.
- The purpose of the global DGLAP analysis of nPDFs is to see whether these effects can be consistently absorbed to the PDFs – do they effectively factorize.

Previous global DGLAP analyses

• Free proton PDFs: CTEQ, MRST, GRV, ...

• Nuclear PDFs:

EKS98 (Eskola, Kolhinen, Ruuskanen, Salgado) [hep-ph/9802350,hep-ph/9807297]

- 1st global analysis for nPDFs
- very good fits to nuclear DIS & DY data obtained with sum rules imposed – it works!

HKN, HKM (Hirai, Kumano, Nagai, Miyama) [hep-ph/0103208,hep-ph/0404093]

- automated chi² minimization
- uncertainty estimates

nDS (de Florian, Sassot)

[hep-ph/0311227]

- first NLO global analysis for nPDFs

Why to do reanalysis?

• Try to improve the old EKS98 global analysis by

- Automated χ^2 minimization (EKS98 was fitted by eye)
- Uncertainty estimates
- Simpler and more transparent fitting functions
- Study the possibility for stronger gluon shadowing
- Necessary 'stepping stone' for our upcoming NLO analysis of the nPDFs.

Recipe of Global PDF analysis

The Framework

- We define the PDFs of bound protons in a nucleus A as $f_i^A(x,Q_0^2) = R_i^A(x,Q_0^2) f_i^{\text{CTEQ6L1}}(x,Q_0^2)$
- PDFs of bound neutrons from: $u_{neutron} = d_{proton}$
- We parametrize the initial distributions at Q₀=1,3 GeV with three R_i's:

 $\begin{array}{ll} R^A_V(x,Q^2_0) & \mbox{for all valence quarks} \\ R^A_S(x,Q^2_0) & \mbox{for all sea quarks} \\ R^A_G(x,Q^2_0) & \mbox{for gluons} \end{array}$

Baryon number & Momentum conservation are required

• Assume the A-dependence of the fit parameters z_i to follow power law

$$z_i^A = z_i^{A_{\rm ref}} \left(\frac{A}{A_{\rm ref}}\right)^{p_{z_i}}$$

The Framework

Piecewize parametrization of R_i's:

$$\begin{split} R_1^A(x) &= c_0^A + (c_1^A + c_2^A x) [\exp(-x/x_s^A) - \exp(-x_a^A/x_s^A)], \qquad x \le x_a^A \\ R_2^A(x) &= a_0^A + a_1^A x + a_2^A x^2 + a_3^A x^3, \qquad x_a^A \le x \le x_e^A \\ R_3^A(x) &= \frac{b_0^A - b_1^A x}{(1-x)^{\beta^A}}, \qquad x_e^A \le x. \end{split}$$

motivation from NMC data...

...and how it finally looks like

The experimental data sets

Over 500 Deep Inelastic & Drell-Yan data points covering 11 elements:

Experiment	Process	Nuclei	datapoints	Ref.					
SLAC E-139	DIS	He(4)/D	18	[25]	SLACE 130	פות	$E_{0}(56)/D$	93	[95]
NMC 95, reanalysis	DIS	He/D	16	[27]	FNAL F779	DV	Fe(00)/D	0	[20]
					NMC 96	פות	Fe/C	5 15	[24] [20]
SLAC E-139	DIS	Be(9)/D	17	[25]	FNAT FREE	DV	Fe/C	10	[20]
NMC 96	DIS	Be(9)/C	15	[29]	FIAL-E800	DI	герве	20	[30]
					SI A C E 130	DIS	A cr (108) /D	7	[25]
SLAC E-139	DIS	C(12)/D	7	[25]	SLAC 1-139	1015	Ag(100)/D		[20]
NMC 95	DIS	C/D	15	[28]	NMC 06	DIS	$S_{2}(117)/C$	15	[90]
FNAL-E665	DIS	C/D	4	[26]	NMC 96 O^2 dep		Sn(11)/C	10	[29]
NMC 95, reanalysis	DIS	C/D	16	[27]	чмо зо, ф цер.	DIS	51/0	1.1.1	[10]
FNAL-E772	DY	C/D	9	[24]	FN & L F779	DV	W7(184)/D	0	[94]
					FNAL FREE	DV	W/Bo	9 98	[2/±] [20]
SLAC E-139	DIS	Al(27)/D	17	[25]	FIAL-DOU	Ы	w/be	20	[30]
NMC 96	DIS	A1/C	15	[29]	STAC E 120	סוס	Au(107)/D	19	[95]
		19205		FC 15	SLAC 1-133	1/15	Au(197)/D	10	[20]
SLAC E-139	DIS	Ca(40)/D	7	[25]	FNAL-E665	DIS	Pb(208)/D	4	[26]
FNAL-E665	DIS	Ca/D	4	[26]	NMC 96		Pb/C	-± 15	[20]
FNAL-E772	DY	Ca/D	9	[24]	FNAL-E665	DIS recalc	Pb/C	10	[26]
NMC 95, reanalysis	DIS	Ca/D	15	[27]	total number of datapoints	DIS, recalc.	10/0	519	[20]
NMC 96	DIS	Ca/C	15	[29]	total number of datapoints			010	

Finding the Parameters

• The data constrain large-x gluons & sea quarks very weakly.

— т

- They were fixed to follow the valence
- Lot of manual work was needed to find out what parameters are relevant and what can be fixed.
- Of 42 initial parameters 16 was left free.

Comparison with data: DIS F₂

 $\frac{\frac{1}{A}d\sigma^{lA}/dQ^2dx}{\frac{1}{12}d\sigma^{lC}/dQ^2dx} \stackrel{\text{LO}}{=} \frac{R_{F_2}^A(x,Q^2)}{R_{F_2}^C(x,Q^2)}$

Comparison with data: Drell-Yan

 $\frac{\frac{1}{A}d\sigma_{DY}^{\mathrm{p}A}/dx_1dQ^2}{\frac{1}{9}d\sigma_{DY}^{\mathrm{pBe}}/dx_1dQ^2}$

Comparison with data: Q²-slopes

$$\frac{\partial \left(F_2^{Sn}(x,Q^2)/F_2^C(x,Q^2)\right)}{\partial \log Q^2} \propto$$

- $\left[\frac{R_g^{Sn}(2x,Q^2)}{R_{F_2}^{Sn}(x,Q^2)} \frac{R_g^C(2x,Q^2)}{R_{F_2}^C(x,Q^2)}\right]$
- Too strong gluon shadowing in Sn w.r.t C would render the log Q²-slopes negative!
- This data set does not favor very strong gluon shadowing around x ~0.03.

$$F_2^{\text{Sn}}(x,Q^2)/F_2^{\text{C}}(x,Q^2)$$

Few words about error analysis:

...and why not to take them too seriously

- $\Delta \chi^2 = \chi^2 (\hat{\xi} + \delta \xi) \chi^2 (\hat{\xi}) = \sum_{i,j} H_{ij} \delta \xi_i \delta \xi_j$ $[\delta F(x,\hat{\xi})]^2 = \Delta \chi^2 \sum_{i,j} \left(\frac{\partial F(x,\xi)}{\partial \xi_i} \right) H_{ij}^{-1} \left(\frac{\partial F(x,\hat{\xi})}{\partial \xi_j} \right)$ Hessian method to quantify errors:
- We take: $\Delta \chi 2 \simeq 18$

Few words about error analysis:

...and why not to take them too seriously

These regions are not constrained by the data – only by the sum rules!

Few words about error analysis:

...and why not to take them too seriously

The PDF error bands only reflect the experimental errors after adopting a set of choices and conventions:

- Choosing the fit functions
- Choice of Data sets
- Weights of data sets in $\chi 2$
- Kinematical cuts
- Treatment of heavy quarks
- Choosing the factorization scale
- etc...
- The PDFs themselves depend on these conventions and none of these 'theoretical uncertainties' are included in PDF error bands.
- There is no universally accepted way to choose $\Delta \chi 2$.

Comparison with other works

No major difference to old EKS98. New parametrization is not released.

• DIS & DY data leaves the gluons still very unconstrained...

Stronger gluon shadowing?

 One possible constrain for nuclear gluons comes from the inclusive hadron production in d+Au at RHIC BRAHMS.

The corresponding factorized QCD cross-sections are of the form

$$\sigma^{AB \to h+X} = \sum_{ijkl} f_i^A(x_1, Q) \otimes f_j^B(x_2, Q) \otimes \sigma^{i+j \to k+l} \otimes D_{k \to h+X}(z, Q_f)$$

Stronger gluon shadowing?

Reaching the datapoints at low-p_T would require extremely
strong gluon shadowing --- probably too strong to be consistent with the DIS & DY data!

 But be aware of other possible effects at low-p_T region! (intrinsic k_T, saturation, (Q²)⁻ⁿ -corrections, etc...)

Conclusions

Present:

The Global LO DGLAP analysis of nuclear PDFs seem to give a very good description of DIS & DY data, $\chi 2/N \cong 0.8$.

No major difference to old EKS98 fit (it's within $\Delta \chi 2 < 18$ band). No new parametrization is thus released.

• Open question:

The gluons remain only weakly constrained by DIS & DY data, but the BRAHMS data would suggest clearly stronger gluon shadowing. The precision of the BRAHMS data is not, however, very conclusive.

• Future:

Extension of the analysis to NLO QCD. Does the the total χ^2 improve?