Anti-nuclei and Nuclei Production in Pb+Pb Collisions at CERN SPS Energies

V. I. Kolesnikov

Joint Institute for Nuclear Research, Dubna

for the Mag collaboration

HEP2007

Manchester, 19-25 July

Contents

Motivation

- NA49 Experiment
- Results
 - Midrapidity $m_t\mbox{-spectra for}\ ^3\mbox{He}$ and t
 - t/³He ratio
 - Rapidity, mass and energy dependence of $< m_t > -m$ for ³He
 - Energy and mass dependence of cluster yields
 - Coalescence parameter $B_{\!3}$ ($R_{\!coal}$) for ^3He vs. m_t and energy
 - dbar/d ratio, anti-deuteron yield vs. centrality
 - B₂ for anti-deuterons (centrality dependence)

□ Summary

Motivation

- Space-time structure of the freeze-out region
- Collective effects in dense and hot nuclear matter
- Reaction volume and freeze-out nucleon density
- Final state interactions and nuclear cluster production mechanism

Particle yields and ratios reproduced by statistical models.

Is the thermal model able to predict the yields of composite particles?

V.I. Kolesnikov

HEP2007, Manchester, 19-25 July

Data sets

³He, t, p – 7% central Pb+Pb at E/A=20-80 GeV (300k each) dbar (d, pbar) - 23% central Pb+Pb at E/A=158 GeV (2.6M)

Analysis

Particle identification via dE/dx and TOF measurements Corrections: TOF efficiency (including quality cuts) > 70%, dE/dx efficiency > 98%, acceptance (GEANT), feeddown for (anti)protons (20-30%) Systematic errors (clusters):

Spectra – 15% (normalization), 10% - slopes (<m_t>-m) Coalescence – 20-30%

Details can be found: Phys. Rev. C69, 024902 (2004) Phys. Rev. C73, 044910 (2006)

Particle ID in NA49

V.I. Kolesnikov

HEP2007, Manchester, 19-25 July

M_t -distributions for ³He and t (E/A=20-80 GeV)

m_t-spectra deviate from thermal distribution due to a large flow component
2-exponential fit function used for extrapolation

t / ³He ratio in central A+ A collisions

³He m_t-spectra (rapidity dependence)

Midrapidity < m_t> -m (energy dependence)

Midrapidity < m_t> -m (mass dependence)

³He yields (rapidity distributions)

Concavity of y-distributions for ³He (in contrast to protons) → increase of cluster formation probability away from Y_{CM} (smaller volume, larger correlations)?

4π yield of ³He in central Pb+ Pb

SHM: F.Becattini et al., PRC73 (2006) 044905

V.I. Kolesnikov

Penalty factor for nuclear cluster production

- Exponential A-dependence for cluster yields
- Penalty factor (p) increases with collision energy
- p-factor hierarchy reflects different phase space distributions for clusters
- Measured penalties for 4π yields agree with the SHM predictions ($p_{SHM} \approx e^{(m_N \mu)/T}$

Coalescence parameter B_A in central A+ A

Increasing of B₃ with m_t suggests collective flow and agrees with a box density profile
Same trend (decreasing with energy) for B₂ and B₃ → increase of the source volume
B₂ agrees (within 25-30%) with √B₃

Coalescence radii R_{coal} for d and ³He

Antideuterons

(0-23% central Pb+ Pb at E/ A= 158 GeV)

Comparison of shapes of the p_t -distributions for \overline{d} and d

Dbar invariant yield (central Pb+ Pb @ E= 158A GeV)

Dbar invariant yield (centrality dependence)

- dbar cross-section increases with centrality
- approx. scales with < N_w>

B₂ for anti-d (p_t-dependence)

B₂ (centrality dependence)

SUMMARY

- Production of ³He and t clusters has been studied by the NA49 experiment in 7% most central Pb+Pb collisions @ E/A=20-80 GeV. Measurements of antideuterons in 23% central Pb+Pb @ E/A=158 GeV are also presented.
- An average midrapidity t/³He ratio of 1.09+/-0.05 is observed representing a considerable equilibrium at SPS.
- For the first time total 4π multiplicities for ³He as well as scaling (penalty) factors for cluster yields in the entire phase space have been measured. Those agree with the predictions of the Statistical Hadronization Model.
- An observed linear rise of midrapidity $< m_t > -m$ with particle (cluster) mass and increase of B₃ with m_t is consistent with strong transverse flow and a box-shaped fireball.
- B₂ and B₃ (R_{coal}) for clusters decreases (increases) gradually with collision energy indicating an increasing source size at SPS.
- Coalescence fireball radii for A=2 and A=3 clusters, derived from the B_A parameters, are consistent with each other within errors.
- Shapes of p_t -distributions for d and dbar are similar up to $p_t = 0.9$ GeV/c.
- Dbar invariant yield increases with centrality linearly with $\langle N_w \rangle$.
- B₂ for antideuterons decreases towards central collisions indicating increase of the source volume.

The NA49 collaboration

C. Alt⁹, T. Anticic²¹, B. Baatar⁸, D. Barna⁴, J. Bartke⁶, L. Betev¹⁰, H. Białkowska¹⁹, C. Blume⁹, B. Boimska¹⁹, M. Botje¹, J. Bracinik³, R. Bramm⁹, P. Bunčić¹⁰, V. Cerny³, P. Christakoglou², O. Chvala¹⁴, J.G. Cramer¹⁶, P. Csató⁴, P. Dinkelaker⁹, V. Eckardt¹³, D. Flierl⁹, Z. Fodor⁴, P. Foka⁷, V. Friese⁷, J. Gál⁴, M. Gaździcki^{9,11}, V. Genchev¹⁸, G. Georgopoulos², E. Gładysz⁶, K. Grebieszkow²⁰, S. Hegyi⁴, C. Höhne⁷, K. Kadija²¹, A. Karev¹³, M. Kliemant⁹, S. Kniege⁹, V.I. Kolesnikov⁸, E. Kornas⁶, R. Korus¹¹, M. Kowalski⁶, I. Kraus⁷, M. Kreps³, M. van Leeuwen¹, P. Lévai⁴, L. Litov¹⁷, B. Lungwitz⁹, M. Makariev¹⁷, A.I. Malakhov⁸, M. Mateev¹⁷, G.L. Melkumov⁸, M. Mitrovski⁹, J. Molnár⁴, St. Mrówczyński¹¹, V. Nicolic²¹, G. Pálla⁴, A.D. Panagiotou², D. Panayotov¹⁷, A. Petridis², M. Pikna³, D. Prindle¹⁶, F. Pühlhofer¹², R. Renfordt⁹, C. Roland⁵, G. Roland⁵, M. Rybczyński¹¹, A. Rybicki^{6,10}, A. Sandoval⁷, N. Schmitz¹³, T. Schuster⁹, P. Seyboth¹³, F. Siklér⁴, B. Sitar³, E. Skrzypczak²⁰, G. Stefanek¹¹, R. Stock⁹, H. Ströbele⁹, T. Susa²¹, I. Szentpétery⁴, J. Sziklai⁴, P. Szymanski^{10,19}, V. Trubnikov¹⁹, D. Varga^{4,10}, M. Vassiliou², G.I. Veres^{4,5}, G. Vesztergombi⁴, D. Vranić⁷, A. Wetzler⁹, Z. Włodarczyk¹¹ I.K. Yoo¹⁵, J. Zimányi⁴

¹NIKHEF, Amsterdam, Netherlands. ²Department of Physics, University of Athens, Athens, Greece. ³Comenius University, Bratislava, Slovakia. ⁴KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. ⁵MIT, Cambridge, USA. ⁶Institute of Nuclear Physics, Cracow, Poland. ⁷Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany. ⁸Joint Institute for Nuclear Research, Dubna, Russia. ⁹Fachbereich Physik der Universität, Frankfurt, Germany. ¹⁰CERN, Geneva, Switzerland. ¹¹Institute of Physics Świetokrzyska Academy, Kielce, Poland. ¹²Fachbereich Physik der Universität, Marburg, Germany. ¹³Max-Planck-Institut für Physik, Munich, Germany.
¹⁴Institute of Particle and Nuclear Physics, Charles University, Prague, Czech Republic. ¹⁵Department of Physics, Pusan National University, Pusan, Republic of Korea. ¹⁶Nuclear Physics Laboratory, University of Washington, Seattle, WA, USA. ¹⁷Atomic Physics Department, Sofia University St. Kliment Ohridski, Sofia, Bulgaria. ¹⁸Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria. ¹⁹Institute for Nuclear Studies, Warsaw, Poland. ²⁰Institute for Experimental Physics, University of Warsaw, Warsaw, Poland. ²¹Rudjer Boskovic Institute, Zagreb, Croatia.

The End

Extra slide (1)

NA49 TPC acceptance (30A GeV)

V.I. Kolesnikov

HEP2007, Manchester, 19-25 July

Extra slide (2)

SHM : Superposition of fireballs:

$$\frac{dN_i}{dy} = \int_{-\infty}^{\infty} dY \ \rho(Y) \frac{dN_i^0}{dy} (y - Y)$$

where

$$\frac{dN_{i}^{0}}{dy} = \frac{g_{i}V}{2\pi^{2}} \left[\frac{2T^{3}}{\cosh^{2}(y-Y)} + \frac{2mT^{2}}{\cosh(y-Y)} + m^{2}T \right] e^{\frac{\mu_{i}}{T}}$$

Rapidity dependence for ρ and μ_{B} :

$$\rho(Y) = \frac{1}{\sqrt{2}\pi\sigma} \exp\left(-\frac{Y^2}{2\sigma_Y^2}\right) \qquad \mu_B = \mu_B^0 + a * Y^2 \qquad \textbf{T} \text{ varying according to the universal freezeout curve}$$

For A=3 clusters exp($3\mu_B/T$) factor overcome Gaussian weight of $\rho(Y)$ at large Y \rightarrow parabolic rapidity distributions for clusters!

dbar/d (energy dependence)

V.I. Kolesnikov

HEP2007, Manchester, 19-25 July

Dbar invariant yield (centrality dependence)

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.