# Anti-nuclei and Nuclei Production in Pb+Pb Collisions at CERN SPS Energies 

V. I. Kolesnikov<br>Joint Institute for Nuclear Research, Dubna<br>for the Nf -9 collaboration

## HEP2007

Manchester, 19-25 July

## Contents

- Motivation
- NA49 Experiment
- Results
- Midrapidity $\mathrm{m}_{\mathrm{t}}$-spectra for ${ }^{3} \mathrm{He}$ and t
- $t /{ }^{3} \mathrm{He}$ ratio
- Rapidity, mass and energy dependence of $\left\langle\mathrm{m}_{\mathrm{t}}\right\rangle-\mathrm{m}$ for ${ }^{3} \mathrm{He}$
- Energy and mass dependence of cluster yields
- Coalescence parameter $B_{3}\left(R_{\text {coal }}\right)$ for ${ }^{3} \mathrm{He}$ vs. $m_{t}$ and energy
- dbar/d ratio, anti-deuteron yield vs. centrality
- $\mathrm{B}_{2}$ for anti-deuterons (centrality dependence)
- Summary


## Motivation

$>$ Space-time structure of the freeze-out region
$>$ Collective effects in dense and hot nuclear matter
$>$ Reaction volume and freeze-out nucleon density
$>$ Final state interactions and nuclear cluster production mechanism

Particle yields and ratios reproduced by statistical models.

Is the thermal model able to predict the yields of composite particles?
(fits by F.Becattini et al, PRC69(2004)024905)



## Data sets

${ }^{3} \mathrm{He}, \mathrm{t}, \mathrm{p}-7 \%$ central $\mathrm{Pb}+\mathrm{Pb}$ at $\mathrm{E} / \mathrm{A}=20-80 \mathrm{GeV}$ (300k each) dbar (d, pbar) - 23\% central Pb+Pb at $\mathrm{E} / \mathrm{A}=158 \mathrm{GeV}$ (2.6M)

## Analysis

Particle identification via dE/dx and TOF measurements Corrections: TOF efficiency (including quality cuts) $>70 \%$, $\mathrm{dE} / \mathrm{dx}$ efficiency > 98\%, acceptance (GEANT), feeddown for (anti)protons (20-30\%)
Systematic errors (clusters):
Spectra - 15\% (normalization), 10\% - slopes (< $m_{t}>-m$ ) Coalescence - 20-30\%

Details can be found: Phys. Rev. C69, 024902 (2004)
Phys. Rev. C73, 044910 (2006)

## Particle ID in NA49





$\mathrm{dE} / \mathrm{dx}+\mathrm{M}^{2}(\mathrm{TOF}) \rightarrow$ hadrons and clusters at midrapidity $0<p_{\mathrm{t}}<2 \mathrm{GeV} / \mathrm{c}$

$d E / d x \rightarrow{ }^{3} \mathrm{He}$ in the entire TPC acceptance $0.5<Y<Y_{\text {beam }}-0.5$ $0<\mathrm{p}_{\mathrm{t}}<3 \mathrm{GeV} / \mathrm{c}$

## $\mathbf{M}_{\mathbf{t}}$-distributions for ${ }^{\mathbf{3}} \mathrm{He}$ and t ( $\mathrm{E} / \mathrm{A}=\mathbf{2 0 - 8 0 ~ G e V ) ~}$




- $m_{t}$-spectra deviate from thermal distribution due to a large flow component
- 2-exponential fit function used for extrapolation


## t/ ${ }^{3} \mathrm{He}$ ratio in central A+A collisions

Primordial (A-Z)/Z-asymmetry (=1.54) goes towards equilibrium in the course of the fireball evolution

$$
\frac{\mathrm{t}}{{ }^{3} \mathrm{He}}=\frac{(\mathrm{npn})}{(\mathrm{npp})} \approx \frac{\mathrm{n}}{\mathrm{p}}
$$

Initial isospin imbalance can be transferred to an excess of $\pi^{-}$over $\pi^{+}$

- $\mathrm{t} /{ }^{3} \mathrm{He}$ ratio decreases with increasing energy ( $\mathrm{t} / 3 \mathrm{He} \cong 1.09+/-0.05$ at SPS)
- $\mathrm{t} /{ }^{3} \mathrm{He}$ ratio is consistent with $\pi^{-} / \pi^{+}$
- data agree with SHM predictions

SHM: F.Becattini et al., PRC73, 044905 (2006)


## ${ }^{3} \mathrm{He} \mathrm{m}_{\mathrm{t}}$-spectra (rapidity dependence)


$<\mathrm{m}_{\mathrm{t}}>$-m decreases with rapidity


Gaussian functions fitted to the data

## Midrapidity < $\mathrm{m}_{\mathrm{t}}>-\mathrm{m}$ (energy dependence)



Gradual increase of $\left\langle\mathrm{m}_{\mathrm{t}}\right\rangle$ for ${ }^{3} \mathrm{He}$ with collision energy at SPS


The same trend (plateau at SPS) observed for (anti)protons NA49, Phys. ReV. C73, 044910 (2006)

## Midrapidity $<\mathrm{m}_{\mathrm{t}}>$ - m (mass dependence)

Different density and flow profiles result in a different A-dependence of $\left\langle m_{t}\right\rangle$ - $m$ for clusters ( A - mass number of a cluster):
A. Polleri et al. Phys. Lett. B419 (1998) 19-24
density: Box or Gauss; flow : $\mathrm{v}(\mathrm{r})=\mathrm{v}_{\mathrm{f}}\left(\frac{\mathrm{r}}{\mathrm{R}}\right)^{\alpha}$

$$
\begin{aligned}
& \left\langle\mathrm{m}_{\mathrm{t}}\right\rangle-\mathrm{m} \propto \mathrm{~A}-(\text { Box }) \\
& \left\langle\mathrm{m}_{\mathrm{t}}\right\rangle-\mathrm{m} \propto \mathrm{~A}^{1-\alpha} \quad-(\text { Gauss })
\end{aligned}
$$

$\alpha \approx 0.9 \div 1.0$ favours a box-like nucleon density profile at SPS

$\begin{aligned} & \pi, K \text { : NA49, J.Phys.G31,S911,2005 } \\ & \text { NA49, Phys. Rev. C66, } 054902 \text { (2002) } \\ & p, d: \text { NA49, Phys. Rev. C69, } 024902 \text { (2004) }\end{aligned}$

## ${ }^{3} \mathrm{He}$ yields (rapidity distributions)




Concavity of $y$-distributions for ${ }^{3} \mathrm{He}$ (in contrast to protons) $\rightarrow$ increase of cluster formation probability away from $\mathrm{Y}_{\mathrm{CM}}$ (smaller volume, larger correlations)?

## $4 \pi$ yield of ${ }^{3} \mathrm{He}$ in central $\mathrm{Pb}+\mathrm{Pb}$

SHM: F.Becattini et al., PRC73 (2006) 044905

> total yields estimated from parabolic fits up to $\left|y_{\text {beam }}\right|$ motivated by RQMD and
> F.Becattini, J.Cleymans, hep-ph/0701029
> yields show surprising agreement with statistical hadron gas model


## Penalty factor for nuclear cluster production




- Exponential A-dependence for cluster yields
- Penalty factor ( $p$ ) increases with collision energy
- p-factor hierarchy reflects different phase space distributions for clusters
- Measured penalties for $4 \pi$ yields agree with the SHM predictions ( $p_{\text {SHM }} \approx \mathrm{e}^{\left(\mathrm{m}_{\mathrm{N}}-\mu\right) / \mathrm{T}}$ )


## Coalescence parameter $B_{A}$ in central $A+A$


proton spectra: NA49, PRC 73, 044910 (2006)

- Increasing of $B_{3}$ with $m_{t}$ suggests collective flow and agrees with a box density profile
- Same trend (decreasing with energy) for $B_{2}$ and $B_{3} \rightarrow$ increase of the source volume
- $\mathrm{B}_{2}$ agrees (within 25-30\%) with $\sqrt{\mathrm{B}_{3}}$


## Coalescence radii $\mathrm{R}_{\text {coal }}$ for d and ${ }^{3} \mathrm{He}$

In a coalescence approach:

$$
\mathrm{V}_{\text {coal }}=\frac{3 \pi^{3 / 2}\left\langle\mathrm{C}_{\mathrm{A}}\right\rangle}{2 \mathrm{~m}_{\mathrm{t}} \mathrm{~B}_{\mathrm{A}}}
$$

$<\mathrm{C}_{\mathrm{A}}>$ - quantum-mechanical correction factor
$\left.<\mathrm{C}_{\mathrm{d}}\right\rangle=0.8,\left\langle\mathrm{C}_{3 \mathrm{He}}>=0.7\right.$
R.Scheibl and U.Heinz, Phys.Rev.C59, 1585 (1999)

- $\mathrm{R}_{\text {coal }}$ for d and ${ }^{3} \mathrm{He}$ agree within errors
- Both increase with energy gradually



## Antideuterons

( $0-23 \%$ central $\mathrm{Pb}+\mathrm{Pb}$ at $\mathrm{E} / \mathrm{A}=158 \mathrm{GeV}$ )

## Comparison of shapes of the $p_{t}$-distributions for $\bar{d}$ and $d$




Similar shapes of the $\mathrm{p}_{\mathrm{t}}$-distributions for $d$ and dbar (up to $p_{t}=0.9 \mathrm{GeV} / \mathrm{c}$ )
$\Sigma$ dbar/d ratio independent on $p_{t}$

## Dbar invariant yield (central Pb+ Pb @ E=158A GeV)



$T_{d}$ fixed to the deuteron slope
$\sigma_{0}$ - invariant yield at $\mathrm{p}_{\mathrm{t}}=0$

## Dbar invariant yield (centrality dependence)



- dbar cross-section increases with centrality
- approx. scales with $<\mathrm{N}_{\mathrm{w}}>$


## $B_{2}$ for anti-d ( $\mathrm{p}_{\mathrm{t}}$-dependence)


weak dependence in the measured $p_{t}$-interval

## $B_{2}$ (centrality dependence)



- $\mathrm{B}_{2}$ decreases with centrality for d and anti-d
- centrality dependence for deuterons is stronger than for anti-d
- both agree within the errors (20\% for d and 30\% for anti-d


## SUMMARY

- Production of ${ }^{3} \mathrm{He}$ and $\mathbf{t}$ clusters has been studied by the NA49 experiment in $7 \%$ most central $\mathrm{Pb}+\mathrm{Pb}$ collisions @ $\mathrm{E} / \mathrm{A}=20-80 \mathrm{GeV}$. Measurements of antideuterons in $23 \%$ central $\mathrm{Pb}+\mathrm{Pb} @ \mathrm{E} / \mathrm{A}=158 \mathrm{GeV}$ are also presented.
- An average midrapidity $\mathrm{t} /{ }^{3} \mathrm{He}$ ratio of $1.09+/-0.05$ is observed representing a considerable equilibrium at SPS.
- For the first time total $4 \pi$ multiplicities for ${ }^{3} \mathrm{He}$ as well as scaling (penalty) factors for cluster yields in the entire phase space have been measured. Those agree with the predictions of the Statistical Hadronization Model.
- An observed linear rise of midrapidity $<\mathrm{m}_{\mathrm{t}}>-\mathrm{m}$ with particle (cluster) mass and increase of $B_{3}$ with $m_{t}$ is consistent with strong transverse flow and a box-shaped fireball.
- $B_{2}$ and $B_{3}\left(R_{\text {coal }}\right)$ for clusters decreases (increases) gradually with collision energy indicating an increasing source size at SPS.
- Coalescence fireball radii for $A=2$ and $A=3$ clusters, derived from the $B_{A}$ parameters, are consistent with each other within errors.
- Shapes of $p_{t}$-distributions for $d$ and dbar are similar up to $p_{t}=0.9 \mathrm{GeV} / \mathrm{c}$.
- Dbar invariant yield increases with centrality linearly with $\left.<\mathrm{N}_{\mathrm{w}}\right\rangle$.
- $\mathrm{B}_{2}$ for antideuterons decreases towards central collisions indicating increase of the source volume.


## The NA49 collaboration

C. Alt ${ }^{9}$, T. Anticic ${ }^{21}$, B. Baatar ${ }^{8}$,D. Barna ${ }^{4}$, J. Bartke ${ }^{6}$, L. Betev ${ }^{10}$, H. Białkowska ${ }^{19}$, C. Blume ${ }^{9}$,

B. Boimska ${ }^{19}$, M. Botje ${ }^{1}$, J. Bracinik ${ }^{3}$, R. Bramm ${ }^{9}$, P. Bunčićc ${ }^{10}$, V. Cerny ${ }^{3}$, P. Christakoglou ${ }^{2}$,
O. Chvala ${ }^{14}$, J.G. Cramer ${ }^{16}$, P. Csató ${ }^{4}$, P. Dinkelaker ${ }^{9}$, V. Eckardt ${ }^{13}$, D. Flierl ${ }^{9}$, Z. Fodor ${ }^{4}$, P. Foka ${ }^{7}$, V. Friese ${ }^{7}$, J. Gál ${ }^{4}$, M. Gaździcki ${ }^{9,11}$, V. Genchev ${ }^{18}$, G. Georgopoulos ${ }^{2}$, E. Gładysz ${ }^{6}$, K. Grebieszkow ${ }^{20}$, S. Hegyi ${ }^{4}$, C. Höhne ${ }^{7}$, K. Kadija ${ }^{21}$, A. Karev ${ }^{13}$, M. Kliemant ${ }^{9}$, S. Kniege ${ }^{9}$, V.I. Kolesnikov ${ }^{8}$, E. Kornas ${ }^{6}$, R. Korus ${ }^{11}$, M. Kowalski ${ }^{6}$, I. Kraus ${ }^{7}$, M. Kreps ${ }^{3}$, M. van Leeuwen ${ }^{1}$, P. Lévai ${ }^{4}$, L. Litov ${ }^{17}$, B. Lungwitz ${ }^{9}$, M. Makariev ${ }^{17}$, A.I. Malakhov ${ }^{8}$, M. Mateev ${ }^{17}$, G.L. Melkumov ${ }^{8}$, M. Mitrovski ${ }^{9}$, J. Molnár ${ }^{4}$, St. Mrówczyński ${ }^{11}$, V. Nicolic ${ }^{21}$, G. Pálla ${ }^{4}$, A.D. Panagiotou ${ }^{2}$, D. Panayotov ${ }^{17}$, A. Petridis ${ }^{2}$, M. Pikna ${ }^{3}$,
D. Prindle ${ }^{16}$, F. Pühlhofer ${ }^{12}$, R. Renfordt ${ }^{9}$, C. Roland ${ }^{5}$, G. Roland ${ }^{5}$, M. Rybczyński ${ }^{11}$, A. Rybicki ${ }^{6,10}$, A. Sandoval ${ }^{7}$, N. Schmitz ${ }^{13}$, T. Schuster ${ }^{9}$, P. Seyboth ${ }^{13}$, F. Siklér ${ }^{4}$, B. Sitar ${ }^{3}$, E. Skrzypczak ${ }^{20}$, G. Stefanek ${ }^{11}$, R. Stock ${ }^{9}$, H. Ströbele ${ }^{9}$, T. Susa ${ }^{21}$, I. Szentpétery ${ }^{4}$, J. Sziklai ${ }^{4}$, P. Szymanski ${ }^{10,19}$, V. Trubnikov ${ }^{19}$, D. Varga ${ }^{4,10}$, M. Vassiliou ${ }^{2}$, G.I. Veres ${ }^{4,5}$, G. Vesztergombi ${ }^{4}$, D. Vranić ${ }^{7}$, A. Wetzler ${ }^{9}$, Z. Włodarczyk ${ }^{11}$ I.K. Yoo ${ }^{15}$, J. Zimányi ${ }^{4}$
${ }^{1}$ NIKHEF, Amsterdam, Netherlands. ${ }^{2}$ Department of Physics, University of Athens, Athens, Greece. ${ }^{3}$ Comenius University, Bratislava, Slovakia. ${ }^{4}$ KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. ${ }^{5}$ MIT, Cambridge, USA. ${ }^{6}$ Institute of Nuclear Physics, Cracow, Poland. ${ }^{7}$ Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany. ${ }^{8}$ Joint Institute for Nuclear Research, Dubna,

Russia. ${ }^{9}$ Fachbereich Physik der Universität, Frankfurt, Germany. ${ }^{10} \mathrm{CERN}$, Geneva, Switzerland. ${ }^{11}$ Institute of Physics Świ etokrzyska Academy, Kielce, Poland. ${ }^{12}$ Fachbereich Physik der Universität, Marburg, Germany. ${ }^{13}$ Max-Planck-Institut für Physik, Munich, Germany.
${ }^{14}$ Institute of Particle and Nuclear Physics, Charles University, Prague, Czech Republic. ${ }^{15}$ Department of Physics, Pusan National University, Pusan, Republic of Korea. ${ }^{16}$ Nuclear Physics Laboratory, University of Washington, Seattle, WA, USA. ${ }^{17}$ Atomic Physics Department, Sofia University St. Kliment Ohridski, Sofia, Bulgaria. ${ }^{18}$ Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria. ${ }^{19}$ Institute for Nuclear Studies, Warsaw, Poland. ${ }^{20}$ Institute for Experimental Physics, University of Warsaw, Warsaw, Poland. ${ }^{21}$ Rudjer Boskovic Institute, Zagreb,

Croatia.

## The End

## Extra slide (1)

## NA49 TPC acceptance (30A GeV)



## Extra slide (2)

SHM : Superposition of fireballs:

$$
\frac{d N_{i}}{d y}=\int_{-\infty}^{\infty} d Y \rho(Y) \frac{d N_{i}^{0}}{d y}(y-Y)
$$

where

$$
\frac{d N_{i}^{0}}{d y}=\frac{g_{i} V}{2 \pi^{2}}\left[\frac{2 T^{3}}{\cosh ^{2}(y-Y)}+\frac{2 m T^{2}}{\cosh (y-Y)}+m^{2} T\right] e^{\frac{\mu_{i}}{T}}
$$

Rapidity dependence for $\rho$ and $\mu_{B}$ :

$$
\rho(Y)=\frac{1}{\sqrt{2} \pi \sigma} \exp \left(-\frac{Y^{2}}{2 \sigma_{Y}^{2}}\right) \quad \mu_{B}=\mu_{B}^{0}+a * Y^{2} \quad \boldsymbol{T} \begin{gathered}
\text { varying according to the } \\
\text { universal freezeout curve }
\end{gathered}
$$

For $A=3$ clusters $\exp \left(3 \mu_{\mathrm{B}} / T\right)$ factor overcome Gaussian weight of $\rho(\mathrm{Y})$ at large $\mathrm{Y} \rightarrow$ parabolic rapidity distributions for clusters!
dbar/d (energy dependence)


## Dbar invariant yield (centrality dependence)



- dbar cross-section increases with centrality
- approx. scales with $<\mathrm{N}_{\mathrm{w}}>$

This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.

