Top Quark Mass Measurements at CDF

Tuula Mäki

University of Helsinki and Helsinki Institute of Physics

for the CDF Collaboration

The 2007 Europhysics Conference on High Energy Physics July 19-25, 2007, Manchester, England

Outline

- Introduction to top quarks
- Motivation to measure top quark mass
- Overview of mass measurement techniques
- Results from dileptonic channel
- Results from lepton+jets channel
- Results from all-hadronic channel
- Combination
- Future prospects
- Conclusions

Introduction to top quarks

- Top quark discovered in 1995 at Fermilab
- Top quark mass suprisingly large
 ~35x heavier than bottom quark
 *5 orders of magnitude between top and up quark masses
- As top quark is so heavy, it decays before hadronization
 ** can be observed as free quark*

Top mass

- Top mass fundamental SM parameter:
 * tests SM predictions
 * important in radiative corrections
 * constrains SM Higgs mass
- Top mass close to scale of electroweak symmetry breaking
- Constraints on SUSY models

Tuula Mäki

Tevatron and CDF

- Tevatron record instantanous luminosity:
 2.9*10³² cm⁻²s⁻¹
- I will show results using $\sim 1 \text{ fb}^{-1}$ of data
- New results with 2 fb⁻¹ coming this summer

Production of $t \overline{t}$ events

 $1 \cdot 10^{10}$

 $6 \cdot 10^{6}$

4000

400

≡1

Classification of $t \overline{t}$ events

$BR(t \rightarrow Wb) \sim 100\%$

 ttbar events can be classified according to W decays

Dilepton channel ★2 leptons (e, µ), 2 neutrinos, 2 quarks

*low background

All-hadronic channel *6 quarks *high background

Lepton+jets channel ★1 lepton (e, µ), 1 neutrino, 4 quarks ★managable background

Tuula Mäki

Europhysics Conference on High Energy Physics, July 19th-25th 2007

categories

Challenges

Neutrinos escape detector ** partial information can be measured as missing E_T*

Quarks hadronize and form jets
 Measured energy of jets has to be corrected back to parton level
 Many ways to assign a jet to a parton
 B-tagging reduces number of possible assignments, but also reduces statistics

 Background processes mimic top events

Tuula Mäki

Overview of top mass measurements

Robust program of complementary measurements:

Many measurements in all the different channels

- consistency

 Different methods of extraction with different sensitivity

- confidence

Combine all channels and all methods

- precision

I will only talk about the most precise and representative ones

Template method

- Calculate a per-event observable that is sensitive to M_{top}
- Make templates from signal and background events
- Use pseudo-experiments to check the method works
- Fit data to templates using maximum likelihood

B-tagged signal templates

Matrix element method

Calculate probability density for each event

$$P(\boldsymbol{x}|\boldsymbol{M}_{t}) = \frac{1}{\sigma(\boldsymbol{M}_{t})} \frac{d \,\sigma(\boldsymbol{M}_{t})}{d \,\boldsymbol{x}}$$

x vector of measured variables

 Use LO Matrix Element and transfer functions to calculate differential cross-section

Differential cross-section from LO matrix element

$$P(\boldsymbol{x}|\boldsymbol{M}_{t}) = \frac{1}{N} \int d\boldsymbol{q}_{1} d\boldsymbol{q}_{2} f_{PDF}(\boldsymbol{q}_{1}) f_{PDF}(\boldsymbol{q}_{2}) |\boldsymbol{M}_{t\bar{t}}(\boldsymbol{p};\boldsymbol{M}_{t})|^{2} \prod \boldsymbol{T}(\boldsymbol{p}_{i},\boldsymbol{j}_{i})$$

Initial state

Transfer function: probability to measure j when parton-level p was produced

Tuula Mäki

Matrix element method

Evaluate differential cross-sections for backgrounds
 Weld together the signal and background pieces to get expression for M_t posterior distribution

$$P(\mathbf{x}|M_{t}) = P_{s}(\mathbf{x}|M_{t}) p_{s} + P_{bg1}(\mathbf{x}) p_{bg1} + P_{bg2}(\mathbf{x}) p_{bg2}...$$

Multiply the event probabilities to extract the most likely mass

Matrix element method

Calibrate the method using simulation

Matrix element methods are computationally heavy

Tuula Mäki

Europhysics Conference on High Energy Physics, July 19th-25th 2007

Dilepton channel

◆ Event signature:
 ★two high p_T leptons (e or µ)
 ★at least two jets

 \star large missing E_T

Backgrounds:

★Drell-Yan
★W+jets where a jet fakes lepton
★diboson

- Advantage for top mass:
 *low background
 *only two possible jet-parton assignments
- Challenge for top mass:
 **under-constrained for top mass fitting *low statistics*

Dilepton: template

- Top mass can be reconstructed assuming a top mass independent distribution
- Use $P_z^{t\overline{t}}$
- Integrate over the distribution
- Select most probable reconstructed M_{top}
- Treat b-tagged and non-tagged events separately

Dilepton: template

Systematic uncertainties

Source	ΔM_{top} (GeV/c ²)
Jet energy scale	±2.9
B-jet energy scale	±0.5
Lepton energy scale	±0.2
Generator	±0.3
ISR	±0.2
FSR	±0.4
PDF	±0.6
Background modeling	±0.3
Template statistics	±0.5
Total	±3.1

Dilepton: template with $\sigma_{t\bar{t}}$ constraint

- Theoretical $\sigma_{t\bar{t}}$ has exponential dependence on top mass
- Include theoretical σ_{tī} in the template method
 ★ measured top mass depends on kinematics and number of events

Dominant systematics

Jet energy scale	±1.5
Luminosity	±1.1
Number of bckg events	±0.9
B-jet energy scale	±0.9

$$M_{top} = 170.7^{+4.2}_{-3.9}(stat.) \pm 2.6(syst.) \pm 2.4(theory) GeV/c^2$$

Tuula Mäki

Europhysics Conference on High Energy Physics, July 19th-25th 2007

most precise

Dilepton: matrix element

- Likelihood calculated for each event using signal and background differential cross-sections **leading order ttbar Z/y* + jets W + 3 jets WW + jets*
- Integrate over all unmeasured quantities and experimental resolutions
- In 1.0 fb⁻¹, 78 events with S/B=2/1

 $M_{top} = 164.5 \pm 3.9(stat.) \pm 3.9(syst.) GeV/c^2$

Dominant systematics

Lepton+jets channel

Light quark jet ISR jet b jet FSR jet

Event signature:

 ★ one high p_T leptons (e or µ)
 ★ at least four jets
 ★ large missing E_T

 Backgrounds:

 ★ W+jets
 ★ QCD where a jet fakes lepton

 Golden channel for top mass measurements: ______
 *reasonable statistics
 *reasonable background
 *in-situ calibration from hadronically decaying W
 *reasonable number of possible jetparton assignments
 *top mass can be fully constrained

Tuula Mäki

Lepton+jets: template

- Top mass reconstructed for each event
- Fitter contains W mass constraints and two top masses equal
- Jet-parton assignment with smallest X² selected

Dominant systematics

Residual JES	±0.7
b-jet energy scale	±0.6
ISR	±0.5

170

175

180

M_{top} (GeV/c²)

165

CDF Run II Preliminary (680 pb⁻¹)

 $M_{top} = 173.4 \pm 2.5 (stat. + JES) \pm 1.3 (syst.) GeV/c^2$

Lepton+jets: matrix element

- Likelihood calculated for each event using leading order ttbar and W+jets differential cross-section
- Integrate over all unmeasured quantities and experimental resolutions
- Fit simultaneously M_{top}, JES, and signal fraction

Dominant systematics

FSR	±0.8
ISR	±0.7
b-JES	±0.6

Tuula Mäki

All-hadronic channel

Event signature:

 ★at least 6 jets (≥1 b-tagged)

 Backgrounds:

 ★QCD multijet

- Advantage for top mass:
 *no neutrinos in final state
 *large statistics
 - in-situ calibration from hadronically decaying W
- Challenge for top mass:
 *large background
 *90 possible ways to assign a jet to a parton

All-hadronic: template method

- Top mass reconstructed for each event
- Jet-parton assignments selected using kinematic fitter
- Neural network to improve S/B
- In 1.0 fb⁻¹, 772 events with S/B=1/2

$$M_{top} = 174.0 \pm 2.2 (stat.) \pm 4.8 (syst.) GeV/c^{2}$$

Dominant systematics

Jet energy scale	±4.5
Generator	±1.0

CDF Run II preliminary

Tuula Mäki

Europhysics Conference on High Energy Physics, July 19th-25th 2007

All-hadronic: ME assisted template

Tuula Mäki

Combination

$$M_{top} = 170.5 \pm 1.3 (stat.) \pm 1.8 (syst.) GeV/c^2$$

 To improve further, combine with DZero measurements: See next talk for Dzero top mass measurements!

$$M_{top} = 170.9 \pm 1.1 (stat.) \pm 1.5 (syst.) GeV/c^2$$

Tuula Mäki

Europhysics Conference on High Energy Physics, July 19th-25th 2007

Future prospects

- CDF top mass measurement already more precise than the goal set in 1996
- All-hadronic channel not included in the prediction on right

☆prediction will be even more precise
with it

 We are working to improve sophistication of systematic errors

Tuula Mäki Europhysics Conference on High Energy Physics, July 19th-25th 2007

Conclusions

 Top quark mass is an important parameter in Standard Model
 **Places constraints on SM Higgs*

Conclusions

Tuula Mäki Europhysics Conference on High Energy Physics, July 19th-25th 2007