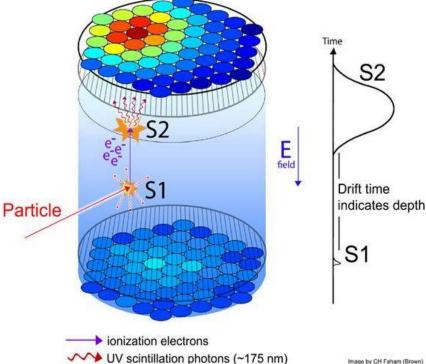
Noble Element Simulation Technique Version 2.0

Ekaterina Kozlova

on behalf of NEST collaboration

NEST collaboration

Lawrence Livermore National Laboratory



UNIVERSITY AT **ALBANY** State University of New York

About NEST

NEST (Noble Element Simulation Technique) is an unprecedentedly accurate and comprehensive simulation of the scintillation, ionization, and electroluminescence processes in noble elements.

- Appliciations:
 - Direct dark matter searches (LUX, LZ, XENON10, PandaX...)
 - Double beta decay searches
 - CEvNS
 - Much more!

About NEST

[aspelene@aspelene nest130119]\$./testNEST 10 gamma 511 511 218 -1

*** Detector definition message ***

You are currently using the default XENON10 (changed version) template detector.

g1 = 0.076 pho	d per photon	g2 = 18.1131 pt	nd per electron	(e-EE = 99.0178%,						vDrift = 1.53908 mm/us
				W = 13.6908 eV	Negative number	s are flagging t	chings below three	shold!	phe=(1+P_dphe)*	<pre>phd & phd=phe/(1+P_dphe)</pre>
E [keV]	field [V/cm]	tDrift [us]	X,Y,Z [mm]		S1 [PE or phe]	S1_3Dcor [phd]	<pre>spikeC(NON-INT)</pre>	Ne-Extr	S2_rawArea [PE]	S2_3Dcorr [phd]
511.000000	218.000000	27.518703	33, -14, 108	19997 17375	1875.634141	1563.028451	1563.028451	16981	372089.241519	313977.292530
511.000000	218.000000	46.101887	29, 14, 79	19555 17347	1785.404024	1487.836687	1487.836687	16813	368593.989719	313666.269861
511.000000	218.000000	44.632275	-7, 30, 81	16078 20758	1380.211882	1150.176569	1150.176569	20134	442183.010849	376037.806971
511.000000	218.000000	53.845306	15, -25, 67	17517 20168	1626.602925	1355.502437	1355.502437	19475	427190.635730	364812.655710
511.000000	218.000000	52.957826	4, -18, 68	15527 21838	1552.693377	1293.911147	1293.911147	21126	463315.275529	395502.830997
511.000000	218.000000	37.530780	12, 15, 92	21401 15303	1973.891763	1644.909803	1644.909803	14866	325764.336070	276141.140341
511.000000	218.000000	37.235463	14, -32, 93	19275 18512	1774.008333	1478.340278	1478.340278	18015	395850.801737	335506.399504
511.000000	218.000000	26.105013	-23, 27, 110	19915 16427	1792.109753	1493.424794	1493.424794	16099	352829.894006	297534.567776
511.000000	218.000000	38.934541	39, -30, 90	16937 20066	1493.121908	1244.268256	1244.268256	19513	429356.446017	364185.521522
511.000000	218.000000	37.110086	26, 41, 93	19347 18056	1755.892244	1463.243537	1463.243537	17570	386174.287539	327286.342777
S1 Mean	S1 Res [%]	S2 Mean	S2 Res [%]	Ec Mean	Ec Res[%]	Eff[%>thr]				
1700.957035	10.776170	403758.099359	11.247163	511.000000	0.000000	100.000000				
If your energ	y resolution is 0%	✤ then you probab	oly still have M	C truth energy or						
						-				

- NEST takes particle type (NR, ER, etc.), initial energy(energies), drift field and direction (-1 for random generation in detector volume) and predicts all parameters of the signal (S1, S2, etc.)
- I NEST is capable of energy reconstruction simulation (picture on slide shows different mode pure MC energy).

NEST v1.0 vs NEST v2.0

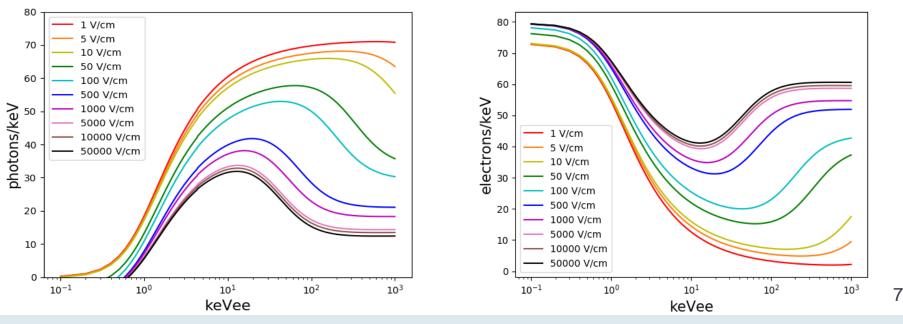
NESTvI.0	NESTv2.0
Only GEANT version	Standalone (C++ and Python) & GEANT versions
No alphas and heavy ions	Alphas and heavy ions simulations included
All equations based on theoretical models (Thomas- Imel box, Doke-Birks, etc.)	Using sigmoids (family of S- shape functions), which still closely resemble those models.

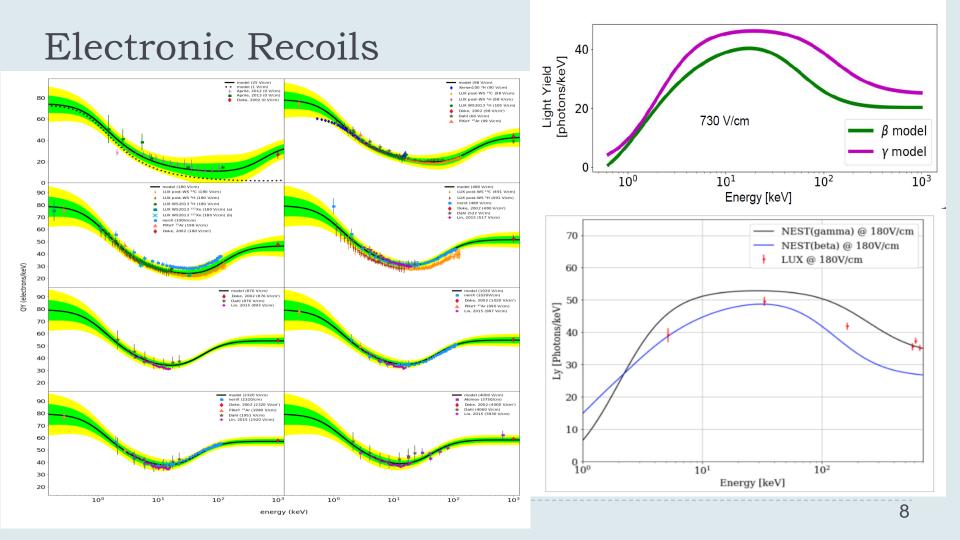
Nuclear recoils

Total quanta (light+charge) is a power law $\neg N_q = \alpha E^{\beta}$

 Charge and light are not anticorrelated at low energies

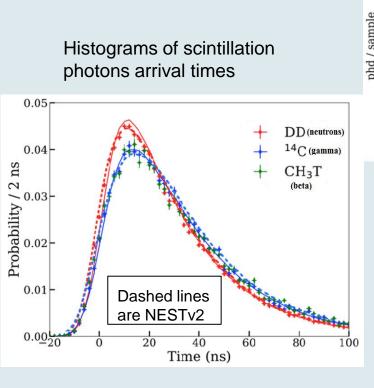
$$N_e = \frac{E}{TIB*\sqrt{E+\varepsilon}} * \left(1 - \frac{1}{1 + (\frac{E}{\zeta})^{\eta}}\right)$$

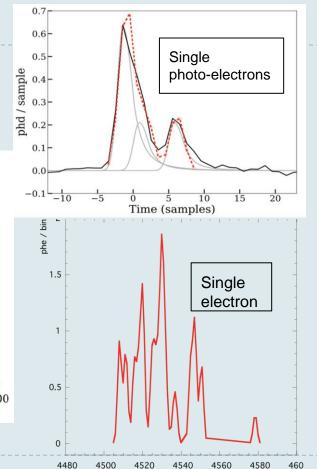

-
$$N_{ph} = (N_q - N_e) * (1 - \frac{1}{1 + (\frac{E}{\theta})^{l}})$$


 Agreed with all data (including Livermore) in 1-sigma

Electronic Recoils

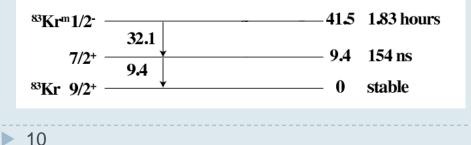
- Smooth transition between low and high energies
- Ly+Qy = const
- I Different models for beta and gamma

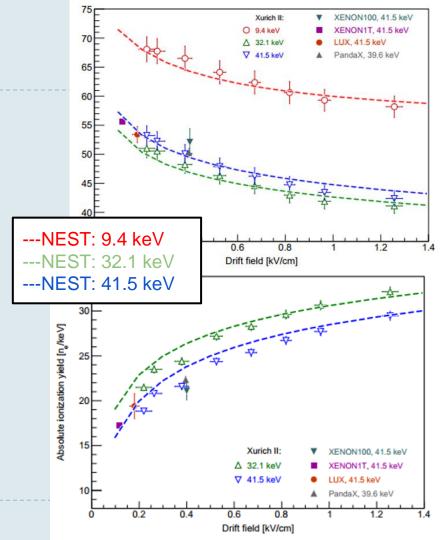




Pulse shapes and single electrons

- Matches LUX pulse shape discrimination
- Can also simulate single electrons!
- Simulates SE noise in LXe





samples

^{83m}Kr

 Robust time-dependent model
 Matches individual decays as well as 'merged' decay

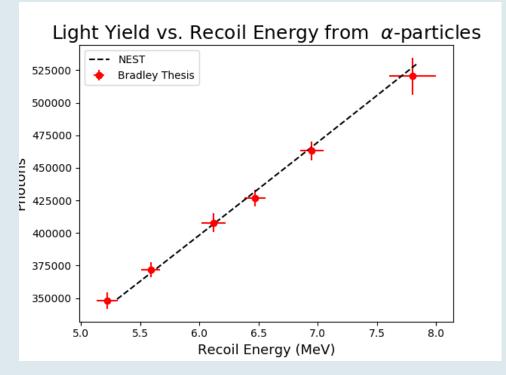
Γ I σ agreement with LUX and XENON100

	Drift Field (V/cm)	Photons/keV, Electrons/keV	NEST Result
LUX Ly	180	53.4 ± 1.4	53.0
LUX Qy	180	19.4 ± 1.4	20.0
XENON100 Ly	366	52.5 ± 1.8	50.6

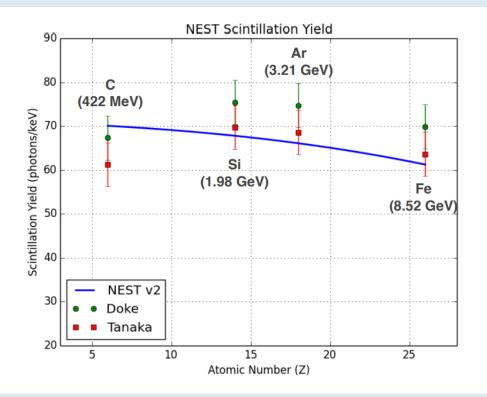
α -Model

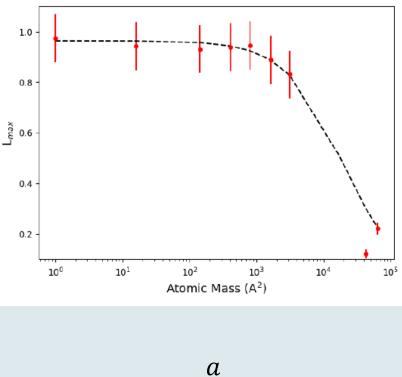
$$N_q = \frac{L * E}{W}$$

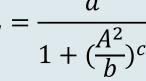
$$L = \alpha E^{\beta}$$


$$N_{ph} = \frac{N_q * \frac{N_{ex}}{N_i}}{1 + \frac{N_{ex}}{N_i}} + R * N_i$$

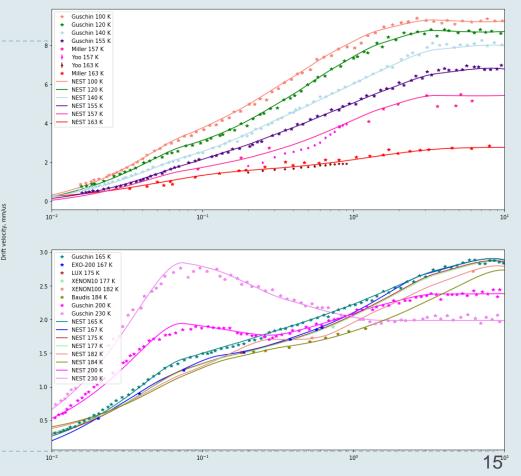
- R is TIB parameter
 $\frac{N_{ex}}{N_i}$ and L-factor are based on data
 $N_e = (N_q N_{ph})$
- Worked by slighly correcting data for extraction efficiency
- Good agreement for strong fields




α -Model


- L-factor fixed by fitting to
 Adam Bradley's thesis data
 (LUX: 180V/cm)
- Still uses Thomas-Imel box model here
 - Energy-independent for simplicity

Heavy ions model

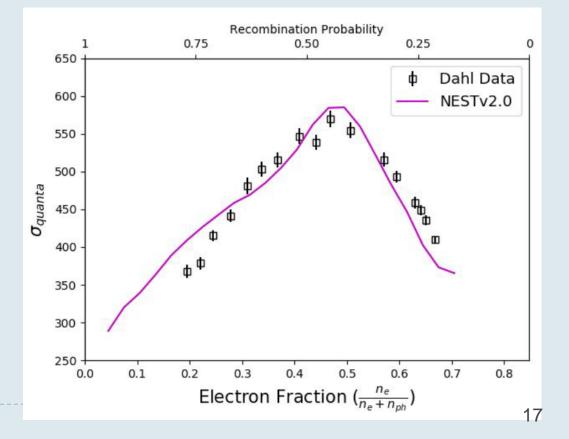


14

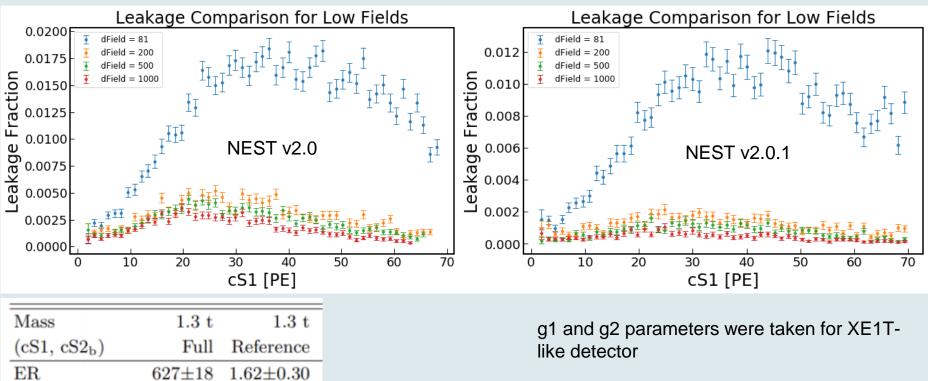
Drift velocity

- NEST also simulates drift velocity for various xenon temperatures and states
- Has good agreement with old and new data

Energy Resolution


Quantum Fluctuations

- First estimates of fluctuations in energy resolution and fluctuations in quanta produced were by Ugo Fano in the 1940's.
- There is energy "lost" when photons are produced in LXe from electron recoils!
- → E = W*(n_{γ} + n_{e}) → Work Function:W = 13.7 eV
- Fluctuations modeled using an empirical "Fano-like" factor proportional to sqrt(energy)*sqrt(field)
- Recombination Fluctuations
 - Binomial recombination has never matched data well.
 - Same equation as cited in LUX Signal Yields Publication: $\sigma_T^2 = (I-p)^* n_i^* p + (\sigma_p n_i)^2$
 - \downarrow σ_p in NEST is both field-dependent and energy-dependent

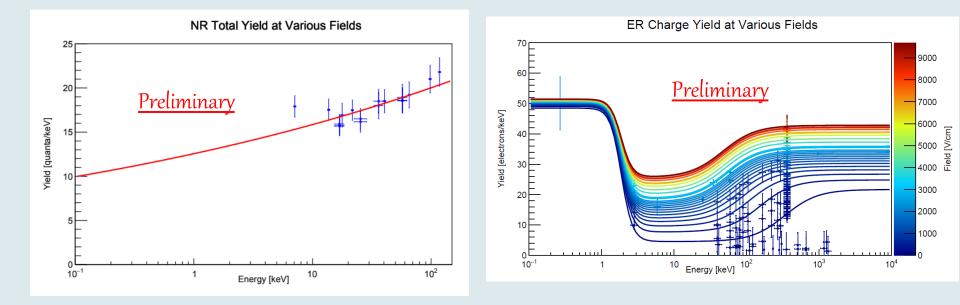

Recombination fluctuations

- Comparing to Eric Dahl's PhD thesis data.
- Corrected Dahl data for overestimation: corrected 15% downward for 2PE effect and extraction eff.

$$\sigma_{\rm T}^2 = (1-p)^* n_i^* p + (\sigma_p n_i)^2$$

Discrimination: v.2.0 vs v2.0.1

Leakage:1.62/627 = 0.0026


arXiv:1805.12562

Argon NEST

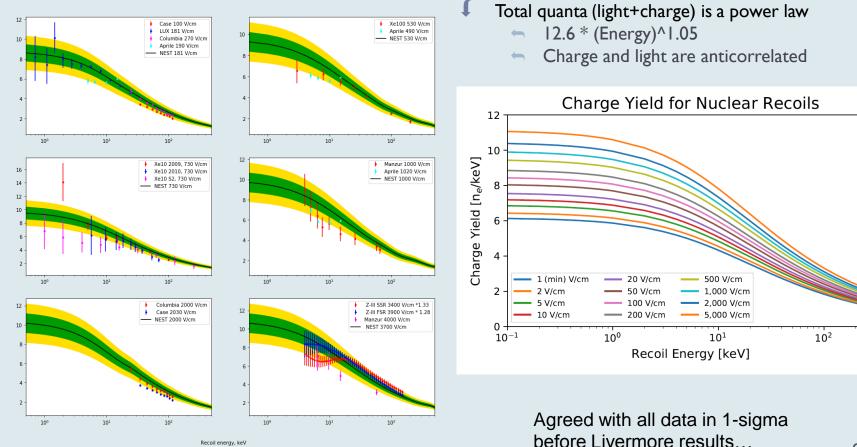
- Argon NEST is under-development version of NEST for argon
- Assumption: both Xe and Ar are noble elements – and formulae would be similar sigmoids for Ar too
- Empirical models for argon are very important

 because theoretical models sometimes are
 contradictory to each other

Argon NEST

- Preliminary models for NR and ER are ready
- · Heavy ion and fluctuations model are under development

Conclusion


- NESTv2 is a powerful simulation tool, which now has two versions: standalone tool and GEANT4 library.
- Accurately simulates many different interactions in LXe and GXe (argon models currently in process)
- I Now has an update for the newest data
- User-friendly code so you can add any other interactions that you might find useful
- Get yourself a copy!
 - https://github.com/NESTCollaboration/nest
 - nest.physics.ucdavis.edu
 - <u>https://github.com/NESTCollaboration/nestpy</u> (python version)

Thank you for your attention!

Þ

Backup slides

Nuclear Recoils: v2.0

Recoil energy, keV