



# Fast component re-emission in Xe-doped liquid argon

Dmitry Rudik (ITEP/MEPhI)

**LIDINE 2019** 

28 August 2019



- Liquid argon (LAr)
  - LAr scintillation
- Overview of previous studies
- Experimental setup
- Results
- Conclusion





- Liquid argon
- Large scintillation yield ~40 photons/keVee
- Pulse Shape Discrimination (PSD) is possible
  - There are two scintillation components
    - Singlet states  $({}^{1}\Sigma^{+}_{u})$  (~6 ns decay time) 1.
    - Triplet states  $({}^{3}\Sigma_{\mu})$  (~1.5 µs decay time) 2.
  - Singlet/triplet ratio depends on the recoil type
- Problem: scintillation is in VUV light (~128 nm)





# Problems of LAr scintillation registration



- Hard to detect LAr light ( $\lambda$  = 128 nm)
- Problems with reflectivity of detector walls
- Common solution is to use WLS
  - TPB
  - Another film WLS (?)
  - Xe doping (λ = 175 нм)

#### Questions:

- Fast component reemission
- PSD efficiency
- Stability of mixture parameters
- Solubility problem



TPB problems:

- 1. Self-Light-Absorption
- 2. Covering problems
- 3. Degradation
- 4. Non-uniformity of covering
- 5.  $4\pi$  re-emission



O. Cheshnovsky et al *Emission spectra* of deep impurity states in solid and

liquid rare gas alloys JCP (1972) 57

Xe-doping advantages: 1. Volume-distributed

- Volume-distribut
- 2. Clean
- 3. No additional constructions inside the detector
- 4. No self-absorption
- 5. Re-emission in the point of interaction

28.08.2019



## Previous studies (short list)



|                                                                                                                                                                                                                                                                                                                                                                                         | Exp. | Theor.        | Slow | Fast | PSD <sub>low_ppm</sub> | PSD <sub>high_ppm</sub> | IR | Long run |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|------|------|------------------------|-------------------------|----|----------|--|--|
| [1]                                                                                                                                                                                                                                                                                                                                                                                     | 1    | <b>√</b> (*)  | +    | (-)  | ×                      | ×                       | ×  | ×        |  |  |
| [2]                                                                                                                                                                                                                                                                                                                                                                                     | 1    | <b>√</b> (**) | +    | ±    | -                      | +(?)                    | ×  | ×        |  |  |
| [3]                                                                                                                                                                                                                                                                                                                                                                                     | 1    | ×             | +    | -    | -                      | +(?)                    | ×  | ×        |  |  |
| [4]                                                                                                                                                                                                                                                                                                                                                                                     | 1    | ×             | +    | -    | -                      | ×                       | 1  | ✓ (***)  |  |  |
| [5],[6]                                                                                                                                                                                                                                                                                                                                                                                 | ×    | 1             | +    | +    | ×                      | ×                       | ×  | ×        |  |  |
| (*) $\operatorname{Ar}_{2}^{*} + \operatorname{Xe} + \operatorname{migration} \rightarrow (\operatorname{Ar}\operatorname{Xe})^{*} + \operatorname{Ar}$ (**) $I = A_{f}e^{-\frac{t}{T_{f}}} + A_{s}e^{-\frac{t}{T_{s}}} - A_{d}e^{-\frac{t}{T_{d}}}$ (1)<br>(ArXe) <sup>*</sup> + Xe + migration $\rightarrow \operatorname{Xe}_{2}^{*} + \operatorname{Ar}$ (***) Shown in Summer 2018 |      |               |      |      |                        |                         |    |          |  |  |

[1] S. Kubota et al The suppression of the slow component in xenon-doped liquid argon scintillation NIM (1993) 327

[2] C. G. Wahl et al Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping JINST (2014) 9

[3] P. Peiffer et al Pulse shape analysis of scintillation signals from pure and xenon-doped liquid argon for radioactive background identification JINST (2008) 3

[4] A. Neumeir et al Intense vacuum ultraviolet and infrared scintillation of liquid Ar-Xe mixtures EPL (2015) 109

[5] A. Hitachi Photon-mediated and collisional processes in liquid rare gases NIM (1993) 327

[6] A. Buzulutskov Photon emission and atomic collision processes in two-phase argon doped with xenon and nitrogen EPL (2017) 117

yot topic!







|              | insert |              | Direct       | ГС           | TDD           |              |
|--------------|--------|--------------|--------------|--------------|---------------|--------------|
| n, ppm (g/g) | steel  | Teflon       | Direct       | гэ           | IPD           | Long run (n) |
| 0÷300*       | 1      | $\checkmark$ | $\checkmark$ | $\checkmark$ | ✓ (different) | 31           |
| 300÷3000**   | ×      | 1            | 1            | 1            | ✔ (the best)  | 54           |

\* Akimov D et al, Study of Xe-doping to LAr scintillator, Journal of Physics: Conference Series (2017) 798

\*\* Akimov D et al, *Fast component re-emission in Xe-doped liquid argon,* [arXiv:1906.00836] → JINST

No fast component reemission with small concentration of Xe-doping

#### **Analysis:**

- Averaged waveform (wf) from  $\alpha$ -source events
- PSD (F40 = an area in first 40 ns of signal to the total area)
- Spectrum





MEPHI HILLING MEPHI- JULIN

There is no WLS in the test chamber except of Xe in these runs. The FS filter is used to cut off direct LAr 128 nm light.





- Two quality parameters:
- Q<sub>PSD</sub>
  - $\alpha$ -events events of interest
  - F40 cut: suppression of γbackground in a factor of 1000
  - Q<sub>PSD</sub> = percentage of remained α-events
- d •  $d = \frac{\mu_{\alpha} - \mu_{\gamma}}{\sqrt{\sigma_{\alpha}^2 + \sigma_{\gamma}^2}}$ , where  $\mu$  – the mean of the Gaussian and  $\sigma$  – RMS
- Saturation at ~2000 ppm





# Light yield (LY) parameters

- $\alpha$ -peak parameters
- With increasing of Xe concentration:
  - LY increasing
  - Resolution becomes slightly better
- In tests with the FS filter (red triangles) LY parameters are better then for the tests with TPB (green circles)
- Saturation at the level of ~2000 ppm







# Stability of mixture

- Long-term run was performed for ~3000 ppm Xe mixture
- Simple one-exponental fit of the averaged wf in appropriate region gave  $\rm T_{seff}$  and  $\rm T_{feff}$  parameters
- Mean value of  $\alpha$ -peak in F40 distribution gives another parameter to check mixture stability
- Stability of all parameters related with Xe concentration:
  - T<sub>seff</sub>
     T<sub>feff</sub>
     Mixture is stable









# Averaged WF analysis

- Fast component is becoming visible at ~600 ppm (g/g)
- A. Hitachi [NIM (1993) 327]: transfer constant is in ~3 times larger for the fast component
- Model (1) [C. G. Wahl et al, JINST (2014) 9] should be extended for high Xe concentrations
- In this case light emission should be represented by 4 terms model (3)
- $T_{ds}$  transfer time for the slow component,  $T_{df}$  transfer time for the fast component

- T<sub>f</sub>, T<sub>s</sub>, T<sub>df</sub> & T<sub>ds</sub> or T<sub>d</sub> are the fit parameters
- Unfortunately, errors are big
  - Electronics noise
  - Trigger effect
  - Averaging procedure
  - etc







Introducing the  $4^{th}$  term into the light emission model allows  $T_{ds}$  to follow power law behavior ns T<sub>df</sub>&T<sub>ds</sub>, 1 00L<sup>df</sup> First experimental measurement of transfer rate constant for the fast component  $k_{({}^{1}\Sigma_{u}^{+})} = \frac{1}{T_{d} \cdot [M]} = 0.9^{+2.3}_{-0.3} \cdot 10^{-11} cm^{3}/s$ 

• Theoretical prediction:  $k_{(1\Sigma_{1}^{+})} = 3.3 \cdot 10^{-11} cm^{3}/s$ 

ns

ل<sup>و</sup>

30

20

10



Kubota (e)

- Wahl (v)

10

1000

10



Wahl (n)

100

100

Transfer time

Slow component decay time

This work (α)

1000

Kubota (e)

- Wahl (v)

Wahl (n)

This work (α Tds) This work (α Tdf)

Xe, ppm



component decay

agreement with

previous studies

time are in



# For further investigations

- $T_{df}$  appear to be higher than expected (~7ns)
- It is comparable to the fast component decay time
- There should be a fraction of direct LAr scintillation (128 nm)
- At the same time, transfer process saturated at this level of Xe concentration
- Two runs with high Xe concentration were performed
  - With TPB (red line)
  - Direct light detection (black line)
- Averaged WFs have different shape than expected
- VUV light in the slow component from (ArXe)\* molecules?
  - Previous spectrometric studies claim that it is possible but it is not clear will it vanish at high Xe concentration or not
- Speculative but possible answer is the another transfer mechanism for the fast component
- E.g. direct excitation of Xe atoms by 128 nm photons





#### Conclusion



- Both fast and slow component reemitted with high Xe concentration
- Observed (with increasing Xe concentration):
  - Increasing of LY and resolution improvement
  - Decreasing of the slow component decay time
  - Increasing of PSD efficiency
    - Which is related to the increasing of the fast component portion re-emission
  - Mixture is stable during the long run
- First experimental measurement of transfer constant for the fast component
- Xe-dopant as WLS looks promising for large-scale LAr detectors
- But:
  - Should be checked linearity with energy
  - PSD for different source types
  - Uniformity in large detector
  - Transfer mechanism is not clear

#### Thank you for your attention!

[arXiv:1906.00836]

• F





### Backup



1 – vacuum vessel; 2 – PMT; 3 – Copper housing with a wire heater attached; 4 – inner volume, 5 –  $LN_2$  bath; 6 – heater and thermocontrol; 7 – gas filter Mycrolys; 8 – electromagnetic pump "Nord" & RGA; 9 – Ar (99,9995%); 10 – cryogenic pumps; B1– B3 – vacuometer; M1 – M3 – manometers; V1– V15 – valves.



## Previous studies

- S. Kubota [1]: Ar\*(Σ<sub>3</sub><sup>\*</sup>) transfer energy to Xe:
  - $Ar_2^* + Xe + migration \rightarrow (ArXe)^* + Ar$
  - $(ArXe)^* + Xe + migration \rightarrow Xe_2^* + Ar$
- D.N. McKinsey et al [2]: Added singlet states to the model
- Light emission [2]:

$$I = A_{f}e^{-\frac{t}{T_{f}}} + A_{s}e^{-\frac{t}{T_{s}}} - A_{d}e^{-\frac{t}{T_{d}}}$$
(1)

- T<sub>f</sub>, T<sub>s</sub> fast and slow components decay times, T<sub>d</sub> time of energy transferring Ar\* --> Xe
- Only the small part of singlets reemitted by Xe



Approximation with the model (1).

<sup>[1]</sup> S. Kubota et al The suppression of the slow component in xenon-doped liquid argon scintillation NIM (1993) 327

<sup>[2]</sup> C. G. Wahl et al Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping JINST (2014) 9



#### Previous studies

- D.N. McKinsey et al [2]:
  - Statistic is low => only hint
  - Very complicated scheme of Xe introducing and measurements
  - TPB
  - PSD is bad with low Xe conc.
  - PSD become better then in pure LAr with high dopands
  - They don't know the reason of PSD improvement
  - $T_d$  is lower for 1000 ppm than it should be according their model
- P. Peiffer et al [3]:
  - TPB in all measurements
  - PSD improved with Xe conc of 300 ppm
  - Don't know the reason
- Neumeier et al [4]:
  - Solubility problem: 30 ppm is a limit
  - Transfer is ended at 10 ppm (by mole)
  - Electrons (!)

[3] P. Peiffer et al Pulse shape analysis of scintillation signals from pure and xenon-doped liquid argon for radioactive background identification JINST (2008) 3

[4] A. Neumeir et al Intense vacuum ultraviolet and infrared scintillation of liquid Ar-Xe mixtures EPL (2015) 109







#### Previous studies

• A. Buzulutskov [5]:

• A. Hitachi [6]:

(17)  $\operatorname{Ar}_{2}^{*}(^{1,3}\Sigma_{u}^{+}) + \operatorname{Xe} \rightarrow \qquad k_{17}(^{3}\Sigma_{u}^{+}) \sim \qquad 87 \operatorname{K} [\underline{17}-\underline{19}] \sim 5.3 \operatorname{ns}$   $2\operatorname{Ar} + \operatorname{Xe}^{*}(n = 1, 2, {}^{2}P_{3/2}) \qquad (0.8 - 1) \times 10^{-11} \operatorname{cm}^{3}\operatorname{s}^{-1}$  $\tau_{17}(^{3}\Sigma_{u}^{+}) < 90 \operatorname{ns} \qquad 87 \operatorname{K} [\underline{18}, \underline{20}] \quad <90 \operatorname{ns}$ 

 $k_{17}({}^{1}\Sigma_{u}^{+}) \sim 3.3 \times 10^{-11} \text{ cm}^{3} \text{s}^{-1}$  87 K [19] ~1.4 ns

For the singlet state, higher concentration of dopants is needed for collisional processes to occur because of its short lifetime. Since  $\rho \propto C^{1/4} \propto (1/\tau_0)^{1/4}$ , we have  $\rho = 1.4 \times (1.6 \ \mu \text{s}/7 \ \text{ns})^{1/4} \approx 5.4 \ \text{Å}$  for Ar<sub>2</sub><sup>\*</sup> (<sup>1</sup>Σ<sub>u</sub><sup>+</sup>)-Xe assuming the same overlap integrals as the triplet state. Then we have  $k_{d-d} \approx 3.3 \times 10^{-11} \ \text{cm}^3/\text{s}$ . It is necessary for [Xe]  $\approx 200$  ppm to

[5] A. Buzulutskov Photon emission and atomic collision processes in two-phase argon doped with xenon and nitrogen EPL (2017) 117
[6] A. Hitachi Photon-mediated and collisional processes in liquid rare gases NIM (1993) 327









#### Data analysis





"Fast component re-emission in Xe-doped LAr" D. Rudik



#### Coincidence scheme











A. Buzulutskov Photon emission and atomic collision processes in two-phase argon doped with xenon and nitrogen EPL (2017) 117





