

Fast component re-emission in Xe-doped liquid argon

Dmitry Rudik (ITEP/MEPhI)

LIDINE 2019

28 August 2019

- Liquid argon (LAr)
	- LAr scintillation
- Overview of previous studies
- Experimental setup
- Results
- Conclusion

- Large scintillation yield $~40$ photons/keVee
- Pulse Shape Discrimination (PSD) is possible
	- There are two scintillation components
		- 1. Singlet states $(^1\Sigma^+_{\ \u})$ (~6 ns decay time)
		- 2. Triplet states $(3\Sigma_{\text{u}}^+)$ (~1.5 µs decay time)
	- Singlet/triplet ratio depends on the recoil type
- Problem: scintillation is in VUV light $(^{\sim}128~\text{nm})$

Problems of LAr scintillation registration

- Hard to detect LAr light $(\lambda = 128$ nm)
- Problems with reflectivity of detector walls
- Common solution is to use WLS
	- TPB
	- Another film WLS (?)
	- Xe doping $(\lambda = 175$ HM)

Questions:

- Fast component reemission
- PSD efficiency
- Stability of mixture parameters
- Solubility problem

TPB problems:

- 1. Self-Light-Absorption
- Covering problems
- 3. Degradation
- 4. Non-uniformity of covering
- 4π re-emission

O. Cheshnovsky et al *Emission spectra*

of deep impurity states in solid and liquid rare gas alloys JCP (1972) 57 Xe-doping advantages:

- 1. Volume-distributed
- 2. Clean
- 3. No additional constructions inside the detector
- 4. No self-absorption
- 5. Re-emission in the point of interaction

Previous studies (short list)

[1] S. Kubota et al *The suppression of the slow component in xenon-doped liquid argon scintillation* NIM (1993) 327

[2] C. G. Wahl et al *Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping JINST (2014)* 9

[3] P. Peiffer et al *Pulse shape analysis of scintillation signals from pure and xenon-doped liquid argon for radioactive background identification JINST (2008) 3*

[4] A. Neumeir et al *Intense vacuum ultraviolet and infrared scintillation of liquid Ar-Xe mixtures* EPL (2015) 109

[5] A. Hitachi *Photon-mediated and collisional processes in liquid rare gases NIM (1993) 327*

[6] A. Buzulutskov Photon emission and atomic collision processes in two-phase argon doped with xenon and nitrogen EPL (2017) 117

Hot ropic!

* Akimov D et al, *Study of Xe-doping to LAr scintillator,* Journal of Physics: Conference Series (2017) 798

^{} Akimov D et al,** *Fast component re-emission in Xe-doped liquid argon,* **[arXiv:1906.00836] → JINST**

No fast component reemission with small concentration of Xe-doping

Analysis:

- Averaged waveform (wf) from α -source events
- PSD (F40 = an area in first 40 ns of signal to the total area)
- Spectrum

UNIVERSITY . MOSCOM

There is no WLS in the test chamber except of Xe in these runs. The FS filter is used to cut off direct LAr 128 nm light.

- Two quality parameters:
- $Q_{\tiny \textrm{PSD}}$
	- α -events events of interest
	- F40 cut: suppression of $γ-$ background in a factor of 1000
	- Q_{PSD} = percentage of remained α-events
- d • $d=$ μ_{α} - μ_{γ} $\sigma_{\alpha}^2 + \sigma_{\gamma}^2$, where μ – the mean of the Gaussian and σ – RMS
- Saturation at ~2000 ppm

Light yield (LY) parameters

- α-peak parameters
- With increasing of Xe concentration:
	- LY increasing
	- Resolution becomes slightly better
- In tests with the FS filter (red triangles) LY parameters are better then for the tests with TPB (green circles)
- Saturation at the level of ~2000 ppm

Stability of mixture

- Long-term run was performed for ~3000 ppm Xe mixture
- Simple one-exponental fit of the averaged wf in appropriate region gave T_{seff} and T_{feff} parameters
- Mean value of α -peak in F40 distribution gives another parameter to check mixture stability
- Stability of all parameters related with Xe concentration:

Averaged WF analysis

- Fast component is becoming visible at \sim 600 ppm (g/g)
- A. Hitachi [NIM (1993) 327]: transfer constant is in \sim 3 times larger for the fast component
- Model (1) [C. G. Wahl et al, JINST (2014) 9] should be extended for high Xe concentrations
- In this case light emission should be represented by 4 terms model (3)
- T_{ds} transfer time for the slow component, T_{df} transfer time for the fast component
- T_f , T_s , T_{df} & T_{ds} or T_d are the fit parameters
- Unfortunately, errors are big
	- Electronics noise
	- Trigger effect
	- Averaging procedure
	- etc

Fit parameters 10 \triangle Kubota (e) \triangle Kubota (e) T_{s} , μs SU \bullet Wahl (y) $-Wahl(v)$ $\overline{}^4$ • Fast and slow \bullet Wahl (n) \bullet Wahl (n) 30 \bullet This work (α) • This work (α) component decay $\mathbf{1}$ time are in 20 agreement with $0,1$ 10 previous studies Ω $0,01$ 100 1000 10 10 100 1000 Fast component decay time Xe , ppm Slow component decay time Xe, ppm 1000 Kubota (e) T_{eff} & T_{ds} , ns Introducing the $4th$ term into the light emission model allows T_{ds} to follow power law behavior $-Wahl(v)$ \blacklozenge Wahl (n) This work (α Tds) \bullet This work (α Tdf) First experimental measurement of transfer rate constant for the fast component 1 10 $= 0.9^{+2.3}_{-0.3} \cdot 10^{-11}$ cm³/s $k_{\mathcal{N}}$ $\sum_{u=1}^{1}$ = $T_d \cdot [M]$ $\mu_{\Sigma_{u}^{+}} = 3.3 \cdot 10^{-11} cm^3/s$ • Theoretical prediction: $k_{\mathcal{C}}^{\dagger}$ $\sqrt{-u}$
28.08.2019 Transfer time $\frac{1}{28.08.2019}$ Transfer time $\frac{1}{13}$ 100 Transfer time

For further investigations

- T_{df} appear to be higher than expected (~7ns)
- It is comparable to the fast component decay time
- There should be a fraction of direct LAr scintillation (128 nm)
- At the same time, transfer process saturated at this level of Xe concentration
- Two runs with high Xe concentration were performed
	- With TPB (red line)
	- Direct light detection (black line)
- Averaged WFs have different shape than expected
- VUV light in the slow component from (ArXe)* molecules?
	- Previous spectrometric studies claim that it is possible but it is not clear will it vanish at high Xe concentration or not
- Speculative but possible answer is the another transfer mechanism for the fast component
- E.g. direct excitation of Xe atoms by 128 nm photons

Conclusion

- Both fast and slow component reemitted with high Xe concentration
- Observed (with increasing Xe concentration):
	- Increasing of LY and resolution improvement
	- Decreasing of the slow component decay time
	- Increasing of PSD efficiency
		- Which is related to the increasing of the fast component portion re-emission
	- Mixture is stable during the long run
- First experimental measurement of transfer constant for the fast component
- Xe-dopant as WLS looks promising for large-scale LAr detectors
- But:
	- Should be checked linearity with energy
	- PSD for different source types
	- Uniformity in large detector
	- Transfer mechanism is not clear

Thank you for your attention!

[arXiv:1906.00836]

Backup

1 – vacuum vessel; 2 – PMT; 3 – Copper housing with a wire heater attached; 4 – inner volume, 5 – LN₂ bath; 6 – heater and thermocontrol; 7 – gas filter Mycrolys; 8 – electromagnetic pump "Nord" & RGA; 9 – Ar (99,9995%); $10 -$ cryogenic pumps; $B1 - B3 -$ vacuometer; $M1 - M3 -$ manometers; $V1 - V15 -$ valves.

Previous studies

- S. Kubota $[1]$: Ar^{*}(Σ_{3}^{*}) transfer energy to Xe:
	- Ar₂^{*} + Xe + migration \rightarrow (ArXe)^{*} + Ar
	- $(A\overline{r}Xe)^* + Xe + \text{migration} \rightarrow Xe_2^* + Ar$
- D.N. McKinsey et al [2]: Added singlet states to the model
- Light emission [2]:

$$
I = A_f e^{-\frac{t}{T_f}} + A_s e^{-\frac{t}{T_s}} - A_d e^{-\frac{t}{T_d}}
$$

(1)

- T_f, T_s fast and slow components
decay times, T_d time of energy
transferring Ar^{*} --> Xe
- Only the small part of singlets reemitted by Xe

Approximation with the model (1).

^[1] S. Kubota et al *The suppression of the slow component in xenon-doped liquid argon scintillation* NIM (1993) 327

^[2] C. G. Wahl et al *Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping* JINST (2014) 9

Previous studies

- D.N. McKinsey et al [2]:
	- Statistic is low \Rightarrow only hint
	- Very complicated scheme of Xe introducing and measurements
	- ТРВ
	- PSD is bad with low Xe conc.
	- **PSD** become better then in pure LAr with high dopands
	- They don't know the reason of PSD improvement
	- T_d is lower for 1000 ppm than it should be according their model
- P. Peiffer et al $[3]$:
	- TPB in all measurements
	- PSD improved with Xe conc of 300 ppm
	- Don't know the reason
- Neumeier et al $[4]$:
	- Solubility problem: 30 ppm is a limit
	- Transfer is ended at 10 ppm (by mole)
	- Electrons (!)

[3] P. Peiffer et al Pulse shape analysis of scintillation signals from pure and xenon-doped liquid argon for radioactive background identification JINST (2008) 3

[4] A. Neumeir et al *Intense vacuum ultraviolet and infrared scintillation of liquid Ar-Xe mixtures* EPL (2015) 109

Previous studies

• A. Buzulutskov [5]:

 \bullet A. Hitachi [6]:

(17) $Ar_2^*(1.3\Sigma_n^+) + Xe \rightarrow k_{17}(3\Sigma_n^+) \sim$ 87 K $[17-19]$ \sim 5.3 ns $2Ar + Xe^*(n = 1, 2, {}^2P_{3/2})$ $(0.8 - 1) \times 10^{-11}$ cm³s⁻¹ $\tau_{17}(^{3}\Sigma^{+}_{y})$ < 90 ns 87 K [18,20] < 90 ns $k_{17}({}^{1}\Sigma_{u}^{+}) \sim 3.3 \times 10^{-11}$ cm³s⁻¹ 87 K [19] \sim 1.4 ns

For the singlet state, higher concentration of dopants is needed for collisional processes to occur because of its short lifetime. Since $\rho \propto C^{1/4} \propto$ $(1/\tau_0)^{1/4}$, we have $\rho = 1.4 \times (1.6 \text{ }\mu\text{s}/7 \text{ }\text{ns})^{1/4} \approx 5.4 \text{ }\text{Å}$ for Ar_2^* ($^1\Sigma_u^+$)-Xe assuming the same everlap integrals as the triplet state. Then we have $k_{d-d} \approx 3.3 \times$ 10^{-11} cm³/s. It is necessary for $[Xc] \approx 200$ ppm to

[5] A. Buzulutskov *Photon emission and atomic collision processes in two-phase argon doped with xenon and nitrogen EPL (2017) 117* [6] A. Hitachi *Photon-mediated and collisional processes in liquid rare gases NIM (1993)* 327

Data analysis

28.08.2019 Trast component re-emission in Xe-doped LAr" D. Rudik 22

Coincidence scheme

50

 $|40\rangle$

 $\overline{30}$

 $\overline{1}$ 20

10

⁰

A. Buzulutskov Photon emission and atomic collision processes in two-phase argon doped with xenon and nitrogen EPL (2017) 117

