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Liquid	argon
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• Large	scintillation	yield	~40	
photons/keVee
• Pulse	Shape	Discrimination	(PSD)	is	
possible
• There	are	two	scintillation	components

1. Singlet	states	(1Σ+u)	(~6	ns	decay	time)
2. Triplet	states	(3Σ+u)	(~1.5	μs decay	time)

• Singlet/triplet	ratio	depends	on	the	
recoil	type

• Problem:	scintillation	is	in	VUV	light	
(~128	nm)

from	ArDM

Nuclear	recoils

Electron	recoils



Problems	of	LAr	scintillation	registration
• Hard	to	detect	LAr	light	(λ =	128	
nm)
• Problems	with	reflectivity	of	
detector	walls
• Common	solution	is	to	use	WLS

• TPB
• Another	film	WLS	(?)
• Xe doping	(λ =	175	нм)

TPB	problems:
1. Self-Light-Absorption
2. Covering	problems
3. Degradation
4. Non-uniformity	of	covering
5. 4π	re-emission

O.	Cheshnovsky et	al	Emission spectra
of deep impurity states in	solid and
liquid rare gas alloys JCP	(1972)	57

Xe-doping	advantages:
1. Volume-distributed
2. Clean
3. No	additional	constructions	inside	

the	detector
4. No	self-absorption
5. Re-emission	in	the	point	of	

interaction

Questions:
• Fast	component	reemission
• PSD	efficiency
• Stability	of	mixture	parameters
• Solubility	problem
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Previous	studies	(short	list)

[1]		S.	Kubota	et	al	The	suppression	of	the	slow	component	in	xenon-doped	liquid	argon	scintillation	NIM	(1993)	327

[2]	C.	G.	Wahl	et	al	Pulse-shape	discrimination	and	energy	resolution	of	a	liquid-argon	scintillator	with	xenon	doping	JINST	(2014)	9

[3]	P.	Peiffer et	al	Pulse	shape	analysis	of	scintillation	signals	from	pure	and	xenon-doped	liquid	argon	for	radioactive	background	identification	JINST	(2008)	3

[4]	A.	Neumeir et	al	Intense	vacuum	ultraviolet	and	infrared	scintillation	of	liquid	Ar-Xe mixtures	EPL	(2015)	109

[5]	A.	Hitachi	Photon-mediated	and	collisional	processes	in	liquid	rare	gases	NIM	(1993)	327

[6]	A.	Buzulutskov Photon	emission	and	atomic	collision	processes	in	two-phase	argon	doped	with	xenon	and	nitrogen	EPL	(2017)	117

Exp. Theor. Slow Fast PSDlow_ppm PSDhigh_ppm IR Long	run

[1] ✓ ✓(*) + − ✗ ✗ ✗ ✗

[2] ✓ ✓(**) + ± − +(?) ✗ ✗

[3] ✓ ✗ + − − +(?) ✗ ✗

[4] ✓ ✗ + − − ✗ ✓ ✓(***)

[5],[6] ✗ ✓ + + ✗ ✗ ✗ ✗

(*)				Ar2∗ +	Xe +	migration	→	(ArXe)∗ +	Ar (**)					𝐼 = 𝐴$𝑒
&	 ()* + 𝐴,𝑒

&	 ()- − 𝐴/𝑒
&	 ()0 (1)

(ArXe)∗ +	Xe +	migration	→	Xe2∗ +	Ar (***)			Shown	in	Summer	2018
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FEU-181	is	VUV	
sensitive:	MgF2
window
Multialkaly
photocathod

Can	operate	at	
cold	(LN2
temperatures)



Runs:

*	Akimov D	et	al,	Study	of	Xe-doping	to	LAr	scintillator,	Journal	of	Physics:	Conference	Series	(2017)	798
** Akimov D	et	al,	Fast	component	re-emission	in	Xe-doped	liquid	argon,	[arXiv:1906.00836]	à JINST

No	fast	component	reemission	with	small	concentration	of	Xe-doping

Analysis:
• Averaged	waveform	(wf)	from α-source	events
• PSD	(F40	=	an	area	in	first	40	ns	of	signal	to	the	total	area)
• Spectrum

n,	ppm	(g/g)
insert

Direct FS TPB Long	run	(h)
steel Teflon

0	÷ 300* ✓ ✓ ✓ ✓ ✓(different) 31

300	÷ 3000** ✗ ✓ ✓ ✓ ✓(the	best) 54

without FS
FS

~260 ppm
Хе (g/g)
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~0	ppm

LAr +	FS
Vacuum +	FS

250	± 30 ppm 590 ± 75	ppm 1170	± 120	ppm

28.08.2019 8

PSD	and	averaged	WF
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There	is	no	WLS	in	the	test	chamber	except	of	Xe in	these	runs.
The	FS	filter	is	used	to	cut	off	direct	LAr	128	nm	light.



PSD-quality

• Two	quality	parameters:
• QPSD

• α-events – events	of	interest
• F40	cut:	suppression	of	γ-
background in	a	factor	of	
1000

• QPSD =	percentage	of	
remained	α-events

• d
• 𝑑 = 23&24

5367546
�

,	where	μ – the	

mean	of	the	Gaussian	and	σ –
RMS

• Saturation	at		~2000	ppm
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Light	yield	(LY)	parameters
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• α-peak	parameters
• With	increasing	of	Xe concentration:
• LY	increasing
• Resolution	becomes	slightly	better

• In	tests	with	the	FS	filter	(red	triangles)	LY	
parameters	are	better	then	for	the	tests	
with	TPB	(green	circles)
• Saturation	at	the	level	of	~2000	ppm



Tfeff

Tseff

Stability	of	mixture
• Long-term	run	was	performed	for	~3000	ppm	Xe mixture

• Simple	one-exponental fit	of	the	averaged	wf in	
appropriate	region	gave	Tseff and	Tfeff parameters

• Mean	value	of	α-peak	in	F40	distribution	gives	another	
parameter	to	check	mixture	stability	

• Stability	of	all	parameters	related	with	Xe concentration:
• Tseff
• Tfeff
• F40
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Averaged	WF	analysis
• Tf,	Ts,	Tdf &	Tds or Td are	the	fit	parameters
• Unfortunately,	errors	are	big

• Electronics	noise
• Trigger	effect
• Averaging	procedure
• etc

a) b) c)

(1)	𝐼 = 𝐴$𝑒
&	 ()* + 𝐴,𝑒

&	 ()- − 𝐴/𝑒
&	 ()0 (2)	𝐼 = 𝐴,𝑒

&	 ()- − 𝐴/𝑒
&	 ()0 (3)	𝐼 = 𝐴$𝑒

& (
)* + 𝐴,𝑒

& (
)- − 𝐴/$𝑒

& (
)0* − 𝐴/,𝑒

& (
)0-

~200 ppm Хе
Direct	

~250 ppm Хе
FS

~1170 ppm Хе
FS

• Fast	component	is	becoming	visible	at	~600	ppm	(g/g)
• A.	Hitachi	[NIM	(1993)	327]:	transfer	constant	is	in	~3	times	larger	for	
the	fast	component

• Model (1) [C.	G.	Wahl	et	al,	JINST	(2014)	9]	should	be	extended	for	
high	Xe concentrations

• In	this	case	light	emission	should	be	represented	by	4	terms	model	(3)
• Tds – transfer	time	for	the	slow	component,	Tdf – transfer	time	for	the	
fast	component



Fit	parameters
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Fast	component	decay	time Slow	component	decay	time

Transfer	time

• Fast	and	slow	
component	decay	
time	are	in	
agreement	with	
previous	studies

• Introducing	the	4th term	into	the	light	emission	
model	allows	Tds to	follow	power	law	behavior

• First	experimental	measurement	of	transfer	rate	
constant	for	the	fast	component

𝑘(;<=>) =
1

𝑇/ B [𝑀]
= 0.9&I.J7K.J B 10&;;𝑐𝑚J/𝑠

• Theoretical	prediction:	𝑘(;<=>) = 3.3 B 10&;;𝑐𝑚J/𝑠



⎯⎯ Direct	(~3000	ppm)
⎯⎯ FS	(~1800	ppm)
⎯⎯ FS	(~3000	ppm)
⎯⎯ TPB	(~	2300	ppm)

For	further	investigations
• Tdf appear	to	be	higher	than	expected	(~7ns)
• It	is	comparable	to	the	fast	component	decay	time
• There	should	be	a	fraction	of	direct	LAr	scintillation	(128	nm)
• At	the	same	time,	transfer	process	saturated	at	this	level	of	Xe
concentration

• Two	runs	with	high	Xe concentration	were	performed
• With	TPB	(red	line)
• Direct	light	detection	(black	line)

• Averaged	WFs	have	different	shape	than	expected
• VUV	light	in	the	slow	component	from	(ArXe)*	molecules?

• Previous	spectrometric	studies	claim	that	it	is	possible	but	it	is	not	clear	
will	it	vanish	at	high	Xe concentration	or	not
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• Speculative	but	possible	answer	is	the	another	
transfer	mechanism	for	the	fast	component
• E.g.	direct	excitation	of	Xe atoms	by	128	nm	
photons

J.N.	Brunt	et	al,	Journal	of	Physics
B:	Atomic	and	Molecular	Physics
9	(1976)	2195



Conclusion
• Both	fast	and	slow	component	reemitted	with	high	Хе concentration
• Observed	(with	increasing	Xe concentration):

• Increasing	of	LY	and	resolution	improvement
• Decreasing	of	the	slow	component	decay	time
• Increasing	of	PSD	efficiency

• Which	is	related	to	the	increasing	of	the	fast	component	portion	re-emission
• Mixture	is	stable	during	the	long	run

• First	experimental	measurement	of	transfer	constant	for	the	fast	
component
• Xe-dopant	as	WLS	looks	promising	for	large-scale	LAr	detectors
• But:

• Should	be	checked	linearity	with	energy
• PSD	for	different	source	types
• Uniformity	in	large	detector
• Transfer	mechanism	is	not	clear
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[arXiv:1906.00836]

Thank	you	for	your	attention!



Backup
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1	– vacuum	vessel; 2	– PMT; 3	– Copper	housing	with	a	wire	heater	attached; 4	– inner	volume,	5	– LN2
bath; 6	– heater	and	thermocontrol; 7	– gas	filter	Mycrolys; 8	– electromagnetic	pump “Nord” & RGA; 9	–
Ar (99,9995%); 10	– cryogenic	pumps;	В1– В3	– vacuometer;	М1	– М3	– manometers;	V1– V15	– valves.

Test	chamber:	gas	system
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Ar

N2



Previous	studies
• S.	Kubota	[1]:	Ar*(ΣJ∗)	transfer	energy	to	Хе:

• Ar2∗ +	Xe +	migration	→	(ArXe)∗ +	Ar
• (ArXe)∗ +	Xe +	migration	→	Xe2∗ +	Ar

• D.N.	McKinsey	et	al	[2]:	Added	
singlet	states	to	the	model
• Light	emission	[2]:

𝐼 = 𝐴$𝑒
&	 ()* + 𝐴,𝑒

&	 ()- − 𝐴/𝑒
&	 ()0

(1)

Tf,	Ts – fast	and	slow	components	
decay	times,	Td – time	of	energy	
transferring	Ar*	--> Хе
• Only	the	small	part	of	singlets	
reemitted	by	Хе

[1]		S.	Kubota	et	al	The	suppression	of	the	slow	component	in	xenon-doped	liquid	argon	scintillation	
NIM	(1993)	327

[2]	C.	G.	Wahl	et	al	Pulse-shape	discrimination	and	energy	resolution	of	a	liquid-argon	scintillator	with	
xenon	doping	JINST	(2014)	9

Approximation	with	the	model (1).
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Previous	studies
• D.N.	McKinsey	et	al	[2]:	

• Statistic	is	low	=>	only	hint
• Very	complicated	scheme	of	Хе introducing	and	measurements
• ТРВ	
• PSD	is	bad	with	low	Xe conc.
• PSD	become	better	then	in	pure	LAr	with	high	dopands
• They	don’t	know	the	reason	of	PSD	improvement
• Td is	lower	for	1000	ppm	than	it	should	be	according	their	model

• P.	Peiffer et	al	[3]:
• TPB	in	all	measurements
• PSD	improved	with	Xe conc of	300	ppm
• Don’t	know	the	reason

• Neumeier	et	al	[4]:
• Solubility	problem:	30 ppm	is	a	limit
• Transfer	is	ended	at	10	ppm (by	mole)	
• Electrons	(!)

[3]	P.	Peiffer et	al	Pulse	shape	analysis	of	scintillation	signals	from	pure	and	xenon-doped	liquid	argon	for	radioactive	background	identification	JINST	
(2008)	3

[4]	A.	Neumeir et	al	Intense	vacuum	ultraviolet	and	infrared	scintillation	of	liquid	Ar-Xe mixtures	EPL	(2015)	109
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Previous	studies
• A.	Buzulutskov [5]:

• A.	Hitachi	[6]:	

[5]		A.	Buzulutskov Photon	emission	and	atomic	collision	processes	in	two-phase	argon	doped	with	xenon	and	nitrogen	EPL	(2017)	117

[6]	A.	Hitachi	Photon-mediated	and	collisional	processes	in	liquid	rare	gases	NIM	(1993)	327
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Why	F40?
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Data	analysis

Signal	start

Number	of	pulses

Wf of	one	event	in	
Xe dopant	test

Pulses	positions
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Averaged	WF	for	pure	
LAr,	direct	light	detection



Coincidence scheme
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Under	the	test	chamber	

Background



Energy	levels	scheme
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A.	Buzulutskov Photon	emission	and	atomic	collision	processes	in	two-phase	argon	doped	with	xenon	and	nitrogen	EPL	(2017)	117



PMT	QE
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