Unification of Flavor, CP, and Modular Symmetries

Alexander Baur

TUM

PASCOS 2019 (Manchester) - 01.07.2019

Unification of Flavor, CP, and Modular Symmetries

based on: A. B. , H.P. Nilles, A. Trautner, P.K.S. Vaudrevange - 1901.03251 (PLB)

```
Outline:
Setup
Flavor Symmetry
Modular Symmetries
CP
```


MOTIVATION

Motivation

MOTIVATION

Renewed interest in modular symmetries:
Feruglio and many more

Orbifold (Pictures)

Torus: \mathbb{T}^{2}

Orbifold (Pictures)

Torus: \mathbb{T}^{2}

Orbifold: $\mathbb{T}^{2} / \mathbb{Z}_{3}$

$\hat{=}$

Orbifold (Pictures)

Torus: \mathbb{T}^{2}

Twisted strings

Winded strings

Orbifold (MATH)

$$
\text { Symmetry of } \mathbb{R}^{d} \quad \longrightarrow \quad \text { Poincaré group }
$$

Symmetry of orbifold

Orbifold (MATH)

Orbifold (MATH)

Symmetry of \mathbb{R}^{d}	\longrightarrow
Poincaré group	
Symmetry of orbifold	\longrightarrow discretize
Space group	

Orbifold (MATH)

Narain space group

- Narain construction accounts for left and right mover
- $(d+d)$ dimensional
- The Narain space group is a stringy version of the space group

Orbifold (MATH)

Symmetry of $\mathbb{R}^{d} \longrightarrow$	Poincaré group
Symmetry of orbifold \longrightarrow discretize	
Space group	

strings

Narain space group
$\longrightarrow \quad$ Symmetry of string momenta

Orbifold (MATH)

Symmetry of \mathbb{R}^{d}	\longrightarrow	Poincaré group
		\downarrow discretize
Symmetry of orbifold	\longrightarrow	Space group

strings

Narain space group

Symmetry of string momenta

Symmetry among string states

Flavor Symmetry of Orbifolds

FLAVOR SYMMETRY OF ORBIFOLDS

Traditional approach

Flavor Symmetry of Orbifolds

Geometrical Symmetries
S_{3}
Traditional approach
Geometrical Symmetries $\quad S_{3}$

Flavor Symmetry of Orbifolds

Flavor Symmetry of Orbifolds

Traditional approach

Flavor Symmetry of Orbifolds

| Traditional approachGeometrical Symmetries S_{3}
 String Selection Rules | $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ |
| :---: | :---: | :---: |
| | |
| "Traditional Flavor Symmetry " | |

[^0]
Flavor Symmetry of Orbifolds

New approach

1. Explicitly calculate the automorphisms of the Narain space group
2. Derive how string states transform under these symmetry operations

| Traditional approachGeometrical Symmetries S_{3}
 String Selection Rules | $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ |
| :---: | :---: | :---: |
| | |
| "Traditional Flavor Symmetry " | |

[T. Kobayashi et al.: hep-ph/o611020]

Narain Orbifold

Narain space group. The Narain space group can be represented by augmented matrices:

$$
\left(\begin{array}{cc|c}
\vartheta_{\mathrm{R}} & & t_{\mathrm{R}} \\
& \vartheta_{\mathrm{L}} & t_{\mathrm{L}} \\
\hline 0 & & 1
\end{array}\right)
$$

Narain Orbifold

Narain space group. The Narain space group can be represented by augmented matrices:

$$
\left(\begin{array}{cc|c}
\vartheta_{\mathrm{R}} & & t_{\mathrm{R}} \\
& \vartheta_{\mathrm{L}} & t_{\mathrm{L}} \\
\hline 0 & & 1
\end{array}\right)
$$

Narain lattice. The Narain space group acts on momenta that lie in a Narain lattice:

$$
\binom{p_{\mathrm{R}}}{p_{\mathrm{L}}}=\frac{e^{-T}}{\sqrt{2}}\left(\begin{array}{cc}
G-B & -\mathbb{1} \\
G+B & \mathbb{1}
\end{array}\right)\binom{\omega}{n}, \quad G=\frac{r}{2}\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right), \quad B=b\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Momenta are parametrized by strings winding and Kaluza-Klein quantum numbers ω and n.

Narain Orbifold

Narain space group. The Narain space group can be represented by augmented matrices:

$$
\left(\begin{array}{cc|c}
\vartheta_{\mathrm{R}} & & t_{\mathrm{R}} \\
& \vartheta_{\mathrm{L}} & t_{\mathrm{L}} \\
\hline 0 & 1
\end{array}\right)
$$

Narain lattice. The Narain space group acts on momenta that lie in a Narain lattice:

$$
\binom{p_{\mathrm{R}}}{p_{\mathrm{L}}}=\frac{e^{-T}}{\sqrt{2}}\left(\begin{array}{cc}
G-B & -\mathbb{1} \\
G+B & \mathbb{1}
\end{array}\right)\binom{\omega}{n}, \quad G=\frac{r}{2}\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right), \quad B=b\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Momenta are parametrized by strings winding and Kaluza-Klein quantum numbers ω and n.

As explicit example ... choose the $\mathbb{T}^{2} / \mathbb{Z}_{3}$ orbifold with all Wilson lines turned off.
[K. S. Narain et al.: Asymmetric Orbifolds], [S. Groot Nibbelink, P. Vaudrevange: 1703.05323]

AUTOMORPHISMS

Form of the automorphisms. Demand the automorphisms to be of the same form as the space group, i.e.

$$
h=\left(\begin{array}{c|c}
\mathrm{GL}(2 d, \mathbb{R}) & t_{\mathrm{R}} \\
& t_{\mathrm{L}} \\
\hline 0 & 1
\end{array}\right)
$$

Further conditions. o. Automorphism of Narain space group, i.e. $G \stackrel{h}{\longmapsto} G$

1. Preserve the Narain metric
2. Leave p_{L}^{2} and p_{R}^{2} invarinat

AUTOMORPHISMS

Form of the automorphisms. Demand the automorphisms to be of the same form as the space group, i.e.

$$
h=\left(\right)
$$

Further conditions. o. Automorphism of Narain space group, i.e. $G \stackrel{h}{\longmapsto} G$

1. Preserve the Narain metric
2. Leave p_{L}^{2} and p_{R}^{2} invarinat

AUTOMORPHISMS

Form of the automorphisms. Demand the automorphisms to be of the same form as the space group, i.e.

$$
h=\left(\right)
$$

Further conditions. o. Automorphism of Narain space group, i.e. $G \stackrel{h}{\longmapsto} G$

1. Preserve the Narain metric
2. Leave p_{L}^{2} and p_{R}^{2} invarinat

Results.

Translation in KK number

$$
n=\frac{1}{3}\binom{1}{1}
$$

Translation in winding number
$\omega=\frac{1}{3}\binom{1}{2}$
180° rotation
$\vartheta=-\mathbb{1}_{4}$

AUTOMORPHISMS

Translation in KK number

$$
n=\frac{1}{3}\binom{1}{1}
$$

Translation in winding number
$\omega=\frac{1}{3}\binom{1}{2}$
\square
$\vartheta=-\mathbb{1}_{4}$

AUTOMORPHISMS

AUTOMORPHISMS

AUTOMORPHISMS

AUTOMORPHISMS

AUTOMORPHISMS

$$
\text { Flavor symmetry } \Delta(54)
$$

Reproduced traditional result

However: There are even more automorphisms!
\rightarrow Identify those as modular transformations

Translation in KK number

$$
n=\frac{1}{3}\binom{1}{1}
$$

Translation in winding number
$\omega=\frac{1}{3}\binom{1}{2}$
180° rotation
$\vartheta=-\mathbb{1}_{4}$

Modular Transformations

Modular Transformations. The modular transformations of the Torus:

$$
\left[\left(\mathrm{SL}(2, \mathbb{Z})_{\rho} \times \mathrm{SL}(2, \mathbb{Z})_{\tau}\right) \rtimes\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)\right] / \mathbb{Z}_{2}
$$

Modular Transformations

Modular Transformations. The modular transformations of the Torus $/ \mathbb{Z}_{3}$ Narain Orbifold:

$$
\begin{gathered}
\rho=\mathrm{e}^{2 \pi \mathrm{i} / 3} \\
{\left[\left(\mathrm{SL}(\hat{2}, \mathbb{Z})_{\rho} \times \mathrm{SL}(2, \mathbb{Z})_{\tau}\right) \rtimes\left(\mathbb{Z}_{2} \times \hat{\not Z}_{2}\right)\right] / \not \mathscr{Z}_{2}}
\end{gathered}
$$

Modular Transformations

Modular Transformations. The modular transformations of the Torus $/ \mathbb{Z}_{3}$ Narain Orbifold:

$$
\begin{aligned}
& \rho=\mathrm{e}^{2 \pi \mathrm{i} / 3} \\
& {\left[\left(\mathrm{SL}(\sqrt[2]{1}, \mathbb{Z})_{\rho} \times\left(\mathrm{SL}(2, \mathbb{Z})_{\tau}\right) \times\left(\mathbb{Z}_{2}\right) \times \mathscr{\not Z}_{2}\right)\right] / \not \mathbb{Z}_{2}^{2}}
\end{aligned}
$$

Modular Transformations

Modular Transformations. The modular transformations of the Torus $/ \mathbb{Z}_{3}$ Narain Orbifold / massless states:

Modular Transformations

Modular Transformations. The modular transformations of the Torus $/ \mathbb{Z}_{3}$ Narain Orbifold/massless states:

Conditions. o. Automorphism of Narain space group, i.e. $G \stackrel{h}{\longmapsto} G$

1. Preserve the Narain metric
2. Leave p_{L}^{2} and p_{R}^{2} invarinat \Leftrightarrow Leave moduli invariant

Modular transformations fulfill these conditions at their fixed points in moduli space!

Flavor Symmetry of $\mathbb{T}^{2} / \mathbb{Z}_{3}$ Orbifold

Conclusions

- Designed a generic method to find flavor symmetries of orbifolds
- Traditional flavor symmetry is enhanced by modular transformations (including CP)
- However, not all modular transformations can appear as flavor symmetries
- The concept of local flavor symmetries allows different flavor groups for different sectors of the theory
- Next step: Calculate flavor symmetries of 6-dim Orbifolds

[^0]: [T. Kobayashi et al.: hep-ph/o611020]

