Stability in open strings with broken supersymmetry

Hervé Partouche

Ecole Polytechnique, CNRS

$$
\text { July 1, } 2019
$$

Based on work in collaboration with S. Abel, E. Dudas and D. Lewis [arXiv:1812.09714].

25th International Symposium on Particles, Strings and Cosmology, PASCOS 2019, Manchester

Introduction

■ Supersymmetry guaranties stability of any Minkowski background under quantum corrections.

■ For Phenomonology and Cosmology, susy must be broken :

- If "explicit" breaking, the effective potential is

$$
\mathcal{V}_{\text {quantum }} \sim M_{\mathrm{s}}^{d}
$$

- If susy spontaneously broken at tree level, in flat space e.g. by a stringy Scherk-Schwarz mechanism, [Kounnas, Porrati, 88]
[Antoniadis, Dudas, Sagnotti, '98]

$$
M=\frac{M_{\mathrm{s}}}{2 R} \quad \Longrightarrow \quad \mathcal{V}_{\text {quantum }} \sim M^{d}
$$

$\Longrightarrow 1)$ We want to find Non-Generic Models that lower this order of magnitude and 2) study the moduli stability.

■ At weak coupling, in open strings compactified on a torus.

Assume the lightest mass scale in the background is M \Longrightarrow the 1-loop effective potential \mathcal{V} is dominated by the light Kaluza-Klein states,

$$
\mathcal{V}=\left(n_{\mathrm{F}}-n_{\mathrm{B}}\right) \xi M^{d}+\mathcal{O}\left(\left(M_{0} M\right)^{\frac{d}{2}} e^{-M_{0} / M}\right), \quad \xi>0
$$

- $n_{\mathrm{F}}, n_{\mathrm{B}}$ are the numbers of massless fermionic and bosonic degrees of freedom.
- M_{0} is the string scale, or an Higgs-like scale.

■ Let us switch on small mass scales i.e. moduli : Because we compactify on a torus ($\mathcal{N}=4$ in 4D), they are Wilson lines (WL)

$$
\mathcal{V}=\left.\mathcal{V}\right|_{a=0}+M^{d} \sum_{\substack{\text { massless } \\ \text { spectrum }}} \sum_{r, I} Q_{r} a_{r}^{I}+\cdots
$$

- a_{r}^{I} is the WL along the internal circle I of the r-th Cartan $U(1)$.
- Q_{r} is the charge of the massless spectrum running in the loop.
- combining states Q_{r} and $-Q_{r} \Longrightarrow 0$: No Tadpole.

■ At quadratic order [Kounnas, H.P, '16] [Coudarchet, H.P., '18]

$$
\mathcal{V}=\left(n_{\mathrm{F}}-n_{\mathrm{B}}\right) \xi M^{d}+M^{d}\left(\sum_{\substack{\text { massless } \\ \text { bosons }}} Q_{r}^{2}-\sum_{\substack{\text { massless } \\ \text { fermions }}} Q_{r}^{2}\right)\left(a_{r}^{I}\right)^{2}+\cdots
$$ The higher \mathcal{V} is, the more unstable it is.

\square We show that tachyon free models with $\mathcal{V} \geq 0$ do exist at the quantum level, when $d \leq 5$.

In 9 dimensions

■ Type I compactified on $S^{1}\left(R_{9}\right)$ with Sherk-Schwarz susy breaking

$$
\begin{gathered}
\mathcal{W}=\operatorname{diag}\left(e^{2 i \pi a_{1}}, e^{-2 i \pi a_{1}}, e^{2 i \pi a_{2}}, e^{-2 i \pi a_{2}}, \ldots, e^{2 i \pi a_{16}}, e^{-2 i \pi a_{16}}\right) \\
\text { momentum } \frac{m_{9}}{R_{9}} \longrightarrow \frac{m_{9}+\frac{F}{2}+a_{r}-a_{s}}{R_{9}}
\end{gathered}
$$

■ T-duality $R_{9} \rightarrow \tilde{R}_{9}=\frac{1}{R_{9}}$ yields a geometric picture in Type I', where WLs become positions along $S^{1}\left(\tilde{R}_{9}\right)$:

- There are 2 O8-orientifold planes at $\tilde{X}^{9}=0$ and $\tilde{X}^{9}=\pi \tilde{R}_{9}$.
- The D9-branes become 32 D8 "half"-branes : 16 at $\tilde{X}^{9}=2 \pi a_{r} \tilde{R}_{9}$ and 16 mirror $\frac{1}{2}$-branes at $\tilde{X}^{9}=-2 \pi a_{r} \tilde{R}_{9}$.
- $\frac{1}{2}$-branes and their mirrors can be coincident on an O8-plane, $a_{r}=0$ or $\frac{1}{2} \Longrightarrow S O(p), p$ even
- Elsewhere, a stack of $q \frac{1}{2}$-branes and the mirror stack $\Longrightarrow \boldsymbol{U}(q)$

■ We look for stable brane configurations.

- A sufficient condition for \mathcal{V} to be extremal with respect to the a_{r} is that no mass scale exist between 0 and M.

This corresponds to $a=0$ or $\frac{1}{2}$ only.

- Moreover, $m_{9}+\frac{1}{2}+\frac{1}{2}-0$ can vanish :

Super-Higgs and Higgs compensate \Longrightarrow massless fermions.
This is necessary to have $n_{\mathrm{F}}-n_{\mathrm{B}} \geq 0$.

■ However, $a= \pm \frac{1}{4}$ is also special :

- $m_{9}+\frac{1}{2}+\frac{1}{4}-\left(-\frac{1}{4}\right)$ can vanish \Longrightarrow massless fermions.

- $S O\left(p_{1}\right) \times S O\left(p_{2}\right) \times U(q) \quad \times U(1)^{2} \quad$ for $\quad G_{\mu 9}$, RR-2-form $C_{\mu 9}$

$$
\begin{gathered}
n_{\mathrm{B}}=8\left(8+\frac{p_{1}\left(p_{1}-1\right)}{2}+\frac{p_{2}\left(p_{2}-1\right)}{2}+q^{2}\right) \\
n_{\mathrm{F}}=8\left(p_{1} p_{2}+\frac{q(q-1)}{2}+\frac{q(q-1)}{2}\right)
\end{gathered}
$$

- Bifundamental $\left(p_{1}, p_{2}\right)$ and antisymmetric $\oplus \overline{\text { antisymmetric }}$
- $n_{\mathrm{F}}-n_{\mathrm{B}}$ is minimal for $p_{1}=32, p_{2}=0, q=0$, which suggests that the $S O(32)$ brane configuration yields an absolute minimum, stable.

- We have described the moduli space where p_{1}, p_{2} are even.
- The moduli space admits a second, disconnected part, where p_{1}, p_{2} are odd \Longrightarrow One $\frac{1}{2}$-brane is frozen at $a=0$, and one frozen at $a=\frac{1}{2} \quad$ [Schwarz,'99]

$$
\mathcal{W}=\operatorname{diag}\left(e^{2 i \pi a_{1}}, e^{-2 i \pi a_{1}}, e^{2 i \pi a_{2}}, e^{-2 i \pi a_{2}}, \ldots, e^{2 i \pi a_{15}}, e^{-2 i \pi a_{15}}, 1,-1\right)
$$

- $n_{\mathrm{F}}-n_{\mathrm{B}}$ is minimal for $p_{1}=31, p_{2}=1, q=0$, which suggest that the $S O(31) \times S O(1)$ brane configuration is an absolute minimum, stable. $(S O(1)$ is to remind the frozen brane ie $\left(p_{1}, 1\right)$ bifundamental fermion)
\square To demonstrate these expectations, we compute the 1-loop potential

$$
\mathcal{V}=\frac{\Gamma(5)}{\pi^{14}} M^{9} \sum_{n_{9}} \frac{\mathcal{N}_{2 n_{9}+1}(\mathcal{W})}{\left(2 n_{9}+1\right)^{10}}+\mathcal{O}\left(\left(M_{s} M\right)^{\frac{9}{2}} e^{-\pi \frac{M_{s}}{M}}\right)
$$

It involves the torus + Klein bottle + annulus + Möbius amplitudes :

$$
\begin{aligned}
& \mathcal{N}_{2 n_{9}+1}(\mathcal{W})=4\left(-16-0-\left(\operatorname{tr} \mathcal{W}^{2 n_{9}+1}\right)^{2}+\operatorname{tr}\left(\mathcal{W}^{2\left(2 n_{9}+1\right)}\right)\right) \\
&=-16\left(\sum_{\substack{r, s=1 \\
r \neq s}}^{N} \cos \left(2 \pi\left(2 n_{9}+1\right) a_{r}\right) \cos \left(2 \pi\left(2 n_{9}+1\right) a_{s}\right)+N-4\right) \\
& \quad(\text { where } N=16 \text { or } 15)
\end{aligned}
$$

\square For $a_{r}=0, \frac{1}{2}, \pm \frac{1}{4}$
$\mathcal{N}_{2 n_{9}+1}(\mathcal{W})=n_{\mathrm{F}}-n_{\mathrm{B}} \quad \Longrightarrow \mathcal{V}=\left(n_{\mathrm{F}}-n_{\mathrm{B}}\right) \xi M^{d}+\mathcal{O}\left(\left(M_{s} M\right)^{\frac{9}{2}} e^{-\pi \frac{M_{s}}{M}}\right)$

- The $U(q)$ groups always have unstable WLs
\Longrightarrow All $\frac{1}{2}$-branes must sit on the O8-planes.
- For $p_{1} \geq 2$, the WLs of $S O\left(p_{1}\right)$ have (masse) ${ }^{2} \propto p_{1}-2-p_{2}$.

For $p_{2} \geq 2$, those of $\boldsymbol{S O}\left(p_{2}\right)$ have (masse) ${ }^{2} \propto p_{2}-2-p_{1}$.
Both cannot be $\geq 0, \quad \Longrightarrow \quad p_{2}$ must be 0 or 1 .
■ Conclusion in 9 dimensions :
$S O(32)$ and $S O(31) \times S O(1)$ are stable brane configurations with M running away

NB : $0-n_{\mathrm{B}}=-4032$ and $n_{\mathrm{F}}-n_{\mathrm{B}}=-3536$, which is higher because

- the dimension of $S O(31)$ is lower
- the frozen $\frac{1}{2}$-brane at $a=\frac{1}{2}$ induces a fermionic bifundam $\left(p_{1}, 1\right)$.

NB : In lower dim, we have more O-planes on which we can freeze more $\frac{1}{2}$-branes $\Longrightarrow n_{F}-n_{\mathrm{B}} \geq 0$.

In d dimensions

\square Type I on $T^{\mathbf{1 0 - d}}$ with metric $G_{I J}$ and Scherk-Schwarz along X^{9}

$$
M=\frac{\sqrt{G^{99}}}{2} M_{s}
$$

■ Type I' picture obtained by T-dualizing T^{10-d} :

- $2^{10-d} \mathrm{O}(d-1)$-planes located at the corners of a $(10-d)$-dimensional box.
- 32 "half" ($d-1$)-branes.
$\square \mathcal{V}$ is extremal when the $32 \frac{1}{2}$-branes are located on the O-planes.

■ The WLs masses can be found from the potential, or
$\operatorname{mass}^{2} \propto\left(\sum_{\substack{\text { massless } \\ \text { bosons }}} Q_{r}^{2}-\sum_{\substack{\text { massless } \\ \text { fermions }}} Q_{r}^{2}\right) \propto p_{2 A-1}-2-p_{2 A} \quad$ as in 9D

- Stability implies

$$
S O\left(p_{2 A-1}\right) \text { with } 0 \text { or } 1 \text { frozen } \frac{1}{2} \text {-brane at corner } 2 A
$$

- $n_{\mathrm{F}}-n_{\mathrm{B}}$ can be positive or negative.
- 23 models have $n_{\mathrm{F}}-n_{\mathrm{B}}=0, \quad$ e.g. in $d \leq 5$:
$S O(4) \times[S O(1) \times S O(1)]^{14}$ or $[S O(5) \times S O(1)] \times[S O(1) \times S O(1)]^{13}, \ldots$
- All can be realized with WL matrices in $S O(32)$ (rather than $O(32) \Longrightarrow$ they are consistent non-perturbatively and should admit heterotic duals.
\square The potential depends on $G_{I J}$ and

$$
a_{\alpha}^{I}=\left\langle a_{\alpha}^{I}\right\rangle+\varepsilon_{\alpha}^{I}, \quad\left\langle a_{\alpha}^{I}\right\rangle \in\left\{0, \frac{1}{2}\right\}, \quad \alpha=1, \ldots, 32, \quad I=d, \ldots, 9
$$

- The Ramond-Ramond moduli $C_{I J}$ have no mass term : Because they are also WLs, but there are no perturbative states charged under the associated $U(1)$'s, $C_{\mu I}$.
- We take $G^{99} \ll\left|G_{i j}\right| \ll G_{99}, i, j=d, \ldots, 8$, to not have mass scales $<M$

$$
\begin{aligned}
& \mathcal{V}=\frac{\Gamma\left(\frac{d+1}{2}\right)}{\pi^{\frac{3 d+1}{2}}} M^{d} \sum_{n_{9}} \frac{\mathcal{N}_{2 n_{9}+1}(\varepsilon, G)}{\left|2 n_{9}+1\right|^{d+1}}+\mathcal{O}\left(\left(M_{0} M\right)^{\frac{d}{2}} e^{-M_{0} / M}\right) \\
& \mathcal{N}_{2 n_{9}+1}(\varepsilon, G)=4\left\{-16-\sum_{(\alpha, \beta) \in L}(-1)^{F} \cos \left[2 \pi\left(2 n_{9}+1\right)\left(\varepsilon_{\alpha}^{9}-\varepsilon_{\beta}^{9}+\frac{G^{9 i}}{G^{99}}\left(\varepsilon_{\alpha}^{i}-\varepsilon_{\beta}^{i}\right)\right)\right]\right. \\
& \times \mathcal{H}_{\frac{d+1}{2}}\left(\pi\left|2 n_{9}+1\right| \frac{\left(\varepsilon_{\alpha}^{i}-\varepsilon_{\beta}^{i}\right) \hat{G}^{i j}\left(\varepsilon_{\alpha}^{j}-\varepsilon_{\beta}^{j}\right)}{\sqrt{G^{99}}}\right) \\
&\left.+\sum_{\alpha} \cos \left[4 \pi\left(2 n_{9}+1\right)\left(\varepsilon_{\alpha}^{9}+\frac{G^{9 i}}{G^{99}} \varepsilon_{\alpha}^{i}\right)\right] \mathcal{H}_{\frac{d+1}{2}}\left(4 \pi \left\lvert\, 2 n_{9}+1 \frac{\varepsilon_{\alpha}^{i_{\alpha} G^{i j} \varepsilon_{\alpha}^{j}}}{\sqrt{G^{99}}}\right.\right)\right\}
\end{aligned}
$$

where $\quad \hat{G}^{i j}=G^{i j}-\frac{C^{i 9}}{G^{99}} G^{99} \frac{G^{9 j}}{G^{99}} \quad$ and $\quad \mathcal{H}_{\nu}(z)=\frac{2}{\Gamma(\nu)} z^{\nu} K_{\nu}(2 z)$

$$
\mathcal{V}=\frac{\Gamma\left(\frac{d+1}{2}\right)}{\pi^{\frac{3 d+1}{2}}} M^{d} \sum_{n_{9}} \frac{\mathcal{N}_{2 n_{9}+1}(\varepsilon, G)}{\left|2 n_{9}+1\right|^{d+1}}+\mathcal{O}\left(\left(M_{0} M\right)^{\frac{d}{2}} e^{-M_{0} / M}\right)
$$

■ Setting the massive open string WLs at $\varepsilon_{\alpha}^{I}=0$,

$$
\begin{aligned}
& \Longrightarrow \quad \mathcal{N}_{2 n_{9}+1}(0, G)=n_{\mathrm{F}}-n_{\mathrm{B}} \\
& \Longrightarrow \quad \mathcal{V}=\left(n_{\mathrm{F}}-n_{\mathrm{B}}\right) \xi M^{d}+\mathcal{O}\left(\left(M_{0} M\right)^{\frac{d}{2}} e^{-M_{0} / M}\right)
\end{aligned}
$$

\Longrightarrow all components of $G_{I J}$ are flat directions !
(Except $M=M_{\mathrm{s}} \sqrt{G^{99}} / 2$ unless $n_{\mathrm{F}}-n_{\mathrm{B}}=0$)
■ $G_{I J}$ and the RR-moduli $C_{I J}$ should be stabilized in the heterotic dual

$$
\left.(G+C)_{I J}\right|_{\text {Type I }}=\left.(G+B)_{I J}\right|_{\text {heterotic }}
$$

at enhanced gauge symmetry points, where there are additional massless states with non-trivial Q_{r}.
These states have winding numbers \Rightarrow they are \mathbf{D}-strings in Type \mathbf{I}.

Conclusion

■ In open string theory compactified on a torus, we have found at the quantum level but weak coupling, backgrounds

- where the open string moduli are stabilized.
- If $n_{\mathrm{F}} \neq \boldsymbol{n}_{\mathrm{B}}$, all closed string moduli except M are flat directions at 1-loop.
However they are expected to be stabilized at 1-loop in an heterotic framework.
- If $\boldsymbol{n}_{\mathrm{F}}=\boldsymbol{n}_{\mathrm{B}}$, we have consistent Minkowski vacua at 1-loop (up to exponentially suppressed terms). Even if non-trivial, it is modest, since higher loop constraints have to be enforced for maintaining flatness [Abel, Stewart, ${ }^{177]}$, up to a residual higher order cosmological constant in g_{s}.
- One has to see if the dilaton and M may be stabilized in perturbation theory. (Contributions of different loops may be of same order of magnitude when $n_{\mathrm{F}}=n_{\mathrm{B}}$.)

