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Introduction
� Supersymmetry guaranties stability of any Minkowski background
under quantum corrections.

� For Phenomonology and Cosmology, susy must be broken :

• If “explicit” breaking, the effective potential is

Vquantum ∼Md
s

• If susy spontaneously broken at tree level, in flat space
e.g. by a stringy Scherk-Schwarz mechanism, [Kounnas, Porrati,’88]

[Antoniadis, Dudas, Sagnotti, ’98]

M =
Ms

2R
=⇒ Vquantum ∼Md

=⇒ 1) We want to find Non-Generic Models that lower this
order of magnitude and 2) study the moduli stability.

� At weak coupling, in open strings compactified on a torus.
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� Assume the lightest mass scale in the background is M
=⇒ the 1-loop effective potential V is dominated by the light
Kaluza-Klein states,

V =
(
nF − nB

)
ξ Md + O

(
(M0M)

d
2 e−M0/M

)
, ξ > 0

• nF, nB are the numbers of massless fermionic and bosonic
degrees of freedom.

• M0 is the string scale, or an Higgs-like scale.

� Let us switch on small mass scales i.e. moduli : Because we
compactify on a torus (N = 4 in 4D), they are Wilson lines (WL)

V = V
∣∣
a=0

+Md
∑

massless
spectrum

∑
r,I

Qra
I
r + · · ·

• aIr is the WL along the internal circle I of the r-th Cartan U(1).

• Qr is the charge of the massless spectrum running in the loop.

• combining states Qr and −Qr =⇒ 0 : No Tadpole.
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� At quadratic order [Kounnas, H.P, ’16] [Coudarchet, H.P., ’18]

V =
(
nF − nB

)
ξ Md +Md

( ∑
massless
bosons

Q2
r −

∑
massless
fermions

Q2
r

)(
aIr
)2

+ · · ·

=⇒ The higher V is, the more unstable it is.

� We show that tachyon free models with V ≥ 0 do exist at the
quantum level, when d ≤ 5.
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In 9 dimensions

� Type I compactified on S1(R9) with Sherk-Schwarz susy breaking

W = diag
(
e2iπa1 , e−2iπa1 , e2iπa2 , e−2iπa2 , . . . , e2iπa16 , e−2iπa16

)
momentum

m9

R9
−→

m9 + F
2 + ar − as
R9

� T-duality R9 → R̃9 = 1
R9

yields a geometric picture in

Type I’, where WLs become positions along S1(R̃9) :

• There are 2 O8-orientifold planes at X̃9 = 0 and X̃9 = πR̃9.

• The D9-branes become 32 D8 “half”-branes :
16 at X̃9 = 2πarR̃9 and 16 mirror 1

2 -branes at X̃9 = −2πarR̃9.

• 1
2 -branes and their mirrors can be coincident on an O8-plane,

ar = 0 or 1
2 =⇒ SO(p), p even

• Elsewhere, a stack of q 1
2 -branes and the mirror stack =⇒ U(q)
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� We look for stable brane configurations.

• A sufficient condition for V to be extremal with respect to
the ar is that no mass scale exist between 0 and M .

This corresponds to a = 0 or 1
2

only.

• Moreover, m9 + 1
2 + 1

2 − 0 can vanish :
Super-Higgs and Higgs compensate =⇒ massless fermions.

This is necessary to have nF − nB ≥ 0.

� However, a = ±1
4

is also special :

• m9 + 1
2 + 1

4 − (−1
4) can vanish =⇒ massless fermions.
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• SO(p1)× SO(p2)× U(q) × U(1)2 for Gµ9, RR-2-form Cµ9

nB = 8

(
8 +

p1(p1 − 1)

2
+
p2(p2 − 1)

2
+ q2

)

nF = 8

(
p1p2 +

q(q − 1)

2
+
q(q − 1)

2

)
• Bifundamental (p1, p2) and antisymmetric ⊕ antisymmetric

• nF − nB is minimal for p1 = 32, p2 = 0, q = 0, which
suggests that the SO(32) brane configuration yields an
absolute minimum, stable.
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� We have described the moduli space where p1, p2 are even.

• The moduli space admits a second, disconnected part,
where p1, p2 are odd =⇒ One 1

2
-brane is frozen at a = 0, and

one frozen at a = 1
2

[Schwarz,’99]

W = diag
(
e2iπa1 , e−2iπa1 , e2iπa2 , e−2iπa2 , . . . , e2iπa15 , e−2iπa15 , 1,−1

)
• nF − nB is minimal for p1 = 31, p2 = 1, q = 0, which

suggest that the SO(31)× SO(1) brane configuration is an
absolute minimum, stable. (SO(1) is to remind the frozen brane ie
(p1, 1) bifundamental fermion)
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� To demonstrate these expectations, we compute the 1-loop
potential

V =
Γ(5)

π14
M9

∑
n9

N2n9+1(W)

(2n9 + 1)10
+O

(
(MsM)

9
2 e−π

Ms
M
)

It involves the torus + Klein bottle + annulus + Möbius amplitudes :

N2n9+1(W) = 4
(
−16− 0 − (trW2n9+1)2 + tr (W2(2n9+1))

)
= −16

(
N∑

r,s=1
r 6=s

cos
(
2π(2n9 + 1)ar

)
cos
(
2π(2n9 + 1)as

)
+N − 4

)
(where N = 16 or 15)

� For ar = 0, 1
2
,±1

4

N2n9+1(W) = nF−nB =⇒ V =
(
nF−nB

)
ξ Md +O

(
(MsM)

9
2 e−π

Ms
M
)
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• The U(q) groups always have unstable WLs

=⇒ All 1
2
-branes must sit on the O8-planes.

• For p1 ≥ 2, the WLs of SO(p1) have (masse)2 ∝ p1 − 2− p2.

For p2 ≥ 2, those of SO(p2) have (masse)2 ∝ p2 − 2− p1.

Both cannot be ≥ 0, =⇒ p2 must be 0 or 1.

� Conclusion in 9 dimensions :

SO(32) and SO(31)×SO(1) are stable brane configurations

with M running away

NB : 0−nB = −4032 and nF−nB = −3536, which is higher because

• the dimension of SO(31) is lower

• the frozen 1
2 -brane at a = 1

2 induces a fermionic bifundam (p1, 1).

NB : In lower dim, we have more O-planes on which we can
freeze more 1

2
-branes =⇒ nF − nB ≥ 0. 11 / 17



In d dimensions

� Type I on T 10−d with metric GIJ andScherk-Schwarz along X9

M =

√
G99

2
Ms

� Type I’ picture obtained by T-dualizing T 10−d :

• 210−d O(d− 1)-planes located at the corners of a
(10− d)-dimensional box.

• 32 “half” (d− 1)-branes.

� V is extremal when the 32 1
2
-branes are located on the

O-planes.
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• SO(pA) at corner A

• massless fermionic
bifundamental (p2A−1, p2A)

The corners 2A− 1, 2A are
the only ones close
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� The WLs masses can be found from the potential, or

mass2 ∝
( ∑
massless
bosons

Q2
r −

∑
massless
fermions

Q2
r

)
∝ p2A−1 − 2− p2A as in 9D

� Stability implies

SO(p2A−1) with 0 or 1 frozen 1
2
-brane at corner 2A

� nF − nB can be positive or negative.

• 23 models have nF − nB = 0, e.g. in d ≤ 5 :

SO(4)×
[
SO(1)×SO(1)

]14
or

[
SO(5)×SO(1)

]
×
[
SO(1)×SO(1)

]13
, . . .

• All can be realized with WL matrices in SO(32) (rather than
O(32) =⇒ they are consistent non-perturbatively and should
admit heterotic duals.
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� The potential depends on GIJ and

aIα = 〈aIα〉+ εIα, 〈aIα〉 ∈
{

0,
1

2

}
, α = 1, . . . , 32, I = d, . . . , 9

• The Ramond-Ramond moduli CIJ have no mass term :
Because they are also WLs, but there are no perturbative states
charged under the associated U(1)’s, CµI .

• We take G99 � |Gij| � G99, i, j = d, . . . , 8, to not have mass
scales < M

V =
Γ
(
d+1
2

)
π

3d+1
2

Md
∑
n9

N2n9+1(ε,G)

|2n9 + 1|d+1
+O

(
(M0M)

d
2 e−M0/M

)
N2n9+1(ε,G)=4

{
−16−

∑
(α,β)∈L(−1)F cos

[
2π(2n9+1)

(
ε9α−ε9β+

G9i

G99 (ε
i
α−εiβ)

)]
×H d+1

2

(
π|2n9+1|

(εiα−ε
i
β)Ĝij(ε

j
α−ε

j
β
)

√
G99

)
+

∑
α cos

[
4π(2n9+1)

(
ε9α+

G9i

G99 ε
i
α

)]
H d+1

2

(
4π|2n9+1| ε

i
α Ĝ

ij ε
j
α√

G99

)}
where Ĝij=Gij−Gi9

G99 G99 G9j

G99 and Hν(z)= 2
Γ(ν)

zνKν(2z)
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V =
Γ
(
d+1
2

)
π

3d+1
2

Md
∑
n9

N2n9+1(ε,G)

|2n9 + 1|d+1
+O

(
(M0M)

d
2 e−M0/M

)
� Setting the massive open string WLs at εIα = 0,

=⇒ N2n9+1(0, G) = nF − nB

=⇒ V =
(
nF − nB

)
ξ Md +O

(
(M0M)

d
2 e−M0/M

)
=⇒ all components of GIJ are flat directions !

(Except M = Ms

√
G99/2 unless nF − nB = 0)

� GIJ and the RR-moduli CIJ should be stabilized in the
heterotic dual

(G+ C)IJ |Type I = (G+B)IJ |heterotic
at enhanced gauge symmetry points, where there are additional
massless states with non-trivial Qr.
These states have winding numbers ⇒ they are D-strings in Type I.
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Conclusion

� In open string theory compactified on a torus, we have found
at the quantum level but weak coupling, backgrounds

• where the open string moduli are stabilized.

• If nF 6= nB, all closed string moduli except M are flat
directions at 1-loop.
However they are expected to be stabilized at 1-loop in an heterotic
framework.

• If nF = nB, we have consistent Minkowski vacua at 1-loop
(up to exponentially suppressed terms). Even if non-trivial, it is
modest, since higher loop constraints have to be enforced for
maintaining flatness [Abel, Stewart, ’17], up to a residual higher order
cosmological constant in gs.

• One has to see if the dilaton and M may be stabilized in
perturbation theory. (Contributions of different loops may be of same
order of magnitude when nF = nB.)
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