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Introduction

B Supersymmetry guaranties stability of any Minkowski background
under quantum corrections.

B For Phenomonology and Cosmology, susy must be broken :

e If “explicit” breaking, the effective potential is

d
unantum ~ Ms

e If susy spontaneously broken at tree level, in flat space

e.g. by a Stringy SCheI‘k—SChwaI‘Z mechanism, [Kounnas, Porrati,’88]
[Antoniadis, Dudas, Sagnotti, '98]

M,
M = TRS = unantum ~ M*?
=—> 1) We want to find Non-Generic Models that lower this

order of magnitude and 2) study the moduli stability.

B At weak coupling, in open strings compactified on a torus.
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B Assume the lightest mass scale in the background is M
—> the 1-loop effective potential V is dominated by the light
Kaluza-Klein states,

Y = (nF — nB) EM? 4+ O((MOM)ge_MO/M> ) §>0

e np, ng are the numbers of massless fermionic and bosonic
degrees of freedom.

e My is the string scale, or an Higgs-like scale.

M Let us switch on small mass scales i.e. moduli : Because we
compactify on a torus (N =4 in 4D), they are Wilson lines (WL)

Vvl M Y Y Qualt oo

massless 7,1
spectrum

e a! is the WL along the internal circle I of the r-th Cartan U(1).
e (), is the charge of the massless spectrum running in the loop.

e combining states @, and —@Q, = 0 : No Tadpole.



B At quadratic order  [Kounnas, H.P, '16] [Coudarchet, H.P., °18]

V= (np—nB)fMd-i—Md( Z Qz— Z Q%)(ai)2+...
massless massless

bosons fermions

—> The higher V is, the more unstable it is.

B We show that tachyon free models with V > 0 do exist at the
quantum level, when d < 5.
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In 9 dimensions

B Type I compactified on S'(Rg) with Sherk-Schwarz susy breaking
W = dlag (621'71'(11 , e—2iﬂ'a1 ’ €2i7ra2, e—2i7ra2, . e?iﬂ'al@7 e—2i7ra16)

mo mg + g + ar — ag
momentum — —

Ry Ry

B T-duality Rg — Rg = R%) yields a geometric picture in
Type I’, where WLs become positions along S’ (Rg) :

e There are 2 O8-orientifold planes at X = 0 and X° = 7 Ry.

° Tl@e D9—bran§s become 32 D8 “half”—brane§ : )
16 at X? = 2ma, Ry and 16 mirror %—branes at XY = —2ma, Ry.

. %—branes and their mirrors can be coincident on an O8-plane,
ap=00r i = SO(p), p even

e Elsewhere, a stack of ¢ %—branes and the mirror stack = U(q)
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q %—branes images
— 1
ata=—7

P2 %—branes

_1
p1 3-branes at a = 3

ata=0

q %—branes
1

ata:Z
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B We look for stable brane configurations.

e A sufficient condition for V to be extremal with respect to
the a, is that no mass scale exist between 0 and M.

This corresponds to a = 0 or % only.

e Moreover, mg + % + % — 0 can vanish :
Super-Higgs and Higgs compensate —> massless fermions.

This is necessary to have np — ng > 0.

1 . .
B However, a = = is also special :

e mg+ 5+ 1 — (—%) can vanish => massless fermions.
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q %—bra.nes images

—_1
ata=—;3

D2 %-branes

p1 3-branes
ata=0

e SO(p1) x SO(p2) x U(q) x U(1)? for G, RR-2-form C)g

—1 ~1

e — 8<p1p2 N q(q2— D, q(q2— 1))

e Bifundamental (p1, p2) and antisymmetric & antisymmetric

e nrp — npy is minimal for p; = 32, po = 0, ¢ = 0, which
suggests that the SO(32) brane configuration yields an
absolute minimum, stable.
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q %-branes images

=-1
ata=—3

L 5 ng
P2 E—brilnca
P %—brancs ata=3
ata=0

q %-braues
at a = %

B We have described the moduli space where pq, py are even.

e The moduli space admits a second, disconnected part,
where py, p2 are odd =—> One %-brane is frozen at a = 0, and
1

one frozen at a = 5 [Schwarz,’99]

W _ diag(ez”ml, e—2z7ra1, 62271'0,276—27,71'(12’ el 6217ral57 6—2171*0,15’ 1’ _1)

e nr — np is minimal for p; = 31, p2 = 1, g = 0, which
suggest that the SO(31) x SO(1) brane configuration is an
absolute minimum, stable. (SO(1) is to remind the frozen brane ie

(p1, 1) bifundamental fermion)
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B To demonstrate these expectations, we compute the

I'(5 9 M
V:% ZW—FO((MSM)?(?_WW)

™

It involves the torus + Klein bottle + annulus + Mobius amplitudes :

Nong+1 (W) = 4(—16 — 0 — (tr W22 4 g (2 C2ro+ D))

N
= —16< Z cos(2m(2ng + 1)a,) cos(2m(2ng + 1)as) + N — 4)

r,s=1
r#s (where N = 16 or 15)
M For a, = 0, ;,:I:;l1

M,

Nong1W) = np—ng =V = (np—ngp) € M4+ O((M,M)7 e ™)
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e The U(q) groups always have unstable WLs

— All %—branes must sit on the O8-planes.

e For p; > 2, the WLs of SO(p;) have (masse)? o« p; — 2 — po.
For py > 2, those of SO(p2) have (masse)? o ps — 2 — p1.
Both cannot be >0, =— p2 must be 0 or 1.

B Conclusion in 9 dimensions :

S0O(32) and SO(31)xSO(1) are stable brane configurations

with M running away

NB :0—ng = —4032 and ngp—ng = —3536, which is higher because
e the dimension of SO(31) is lower

e the frozen 1-brane at a = % induces a fermionic bifundam (py, 1).

NB : In lower dim, we have more O-planes on which we can
. 1
freeze more E-branes — ng —np > 0. 1117



In d dimensions

B Type I on T1°~¢ with metric G;; and Scherk-Schwarz along X°

VG99
2

M = M

B Type I’ picture obtained by T-dualizing T~ :

e 210=d  O(d — 1)-planes located at the corners of a

(10 — d)-dimensional box.

e 32 “half” (d — 1)-branes.

M V is extremal when the 32 %-branes are located on the
O-planes.



7

e SO(pa) at corner A

Pe . .
e massless fermionic

bifundamental (p2a—1,p24)

The corners 2A — 1, 2A are
the only ones close

Py at ds = (1/2,0,0) pa atldy = (1/2,0,1/2)

p1 3-branes at d; = (0,0,0) P2 at a3 = (0,0,1/2)

o "
Direction of Scherk-Schwarz
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B The WLs masses can be found from the potential, or

mass® o ( Z Qz — Z Q?) X P2A—1 — 2 — Paa as in 9D

massless massless
bosons fermions

B Stability implies

SO(p2a—1) with 0 or 1 frozen %—brane at corner 2A

| can be positive or negative.

e 23 models have np — ng =0, eg. ind<5:
SO(4)x [SO(1)xSO(1)]' or [SO(5)xSO(1)] x [SO(1)xSOM)]™, ...
e All can be realized with WL matrices in SO(32) (rather than

0O(32) = they are consistent non-perturbatively and should
admit heterotic duals.



B The potential depends on G5 and

1
al = (al) + ¢!, <a1)€{0,7}, a=1,...,32, I=d,...,9

« o 2

° have no mass term :
Because they are also WLs, but there are no perturbative states
charged under the associated U(1)’s, Cpr.

o We take G?? < |Gij| < Gog, i,j=d,...,8, to not have mass
scales < M

v

3d+1
2

Y =

N g, G) d
e 2n9+1( —Mo/M
Z 2ng + 1]771 +O<(M°M)2€ )

71—
oot
Nang+1(g,G) { 16—3(a,p)eL( -HF Cos[27r(2ng+1)(5 75ﬂ+(99(5 75[3))]

—eb) Gl (el —<T)
><Hd+1<7r\2n9+1|%>

+ 3, cos[4m(2ng+1) (2 + Sy < )]Hd+1(47r\2n9+1| ac\/Tja)}

fid ~i9 99 97
where  GU=GV-S55 6% S and M, (2)=12y 2" K. (22) .
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F N g,G) d
d 2 +1 2 —Mo/M
V= gdH ) u Z |2”99+1|d+1 +O<(M0M)ze of )

B Setting the massive open string WLs at Eé =0,

— N2n9+1(0, G) =Ng —NB

= V= (np—ng) EM? 4 (’)((MOM)%e_MO/M>

— all components of Gy are flat directions !

(Except M = MV G? /2 unless np —ng = 0)

(G + C’)IJ|TypeI = (G + B)IJ|heter0tic

at enhanced gauge symmetry points, where there are additional
massless states with non-trivial Q..
These states have winding numbers =- they are D-strings in Type 1.
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Conclusion

B In open string theory compactified on a torus, we have found
at the quantum level but weak coupling, backgrounds

e where the open string moduli are stabilized.

e If ng # np, all closed string moduli except M are flat
directions at 1-loop.
However they are expected to be stabilized at 1-loop in an heterotic
framework.

o If np = np, we have consistent Minkowski vacua at 1-loop
(up to exponentially suppressed terms). Even if non-trivial, it is
modest, since higher loop constraints have to be enforced for
maintaining flatness [avel, Stewart, '17], Up to a residual higher order
cosmological constant in gs.

e One has to see if the dilaton and M may be stabilized in
perturbation theory. (Contributions of different loops may be of same

order of magnitude when np = ng.) e
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