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Motivations

• There exists a simple model of Abelian vector dark matter (VDM), that implies
an existence of two scalar degrees of freedom, h1 (SM-like) and h2 (non-SM-like),
that mix through their mass matrix, with an angle α.

• The VDM is similar to a model of scalar dark matter (SDM), in which a DM
candidate is an imaginary component (odd under stabilizing symmetry) of an extra
complex scalar field added to the SM. The real component (even under stabilizing
symmetry) develops a vacuum expectation value and mixes with the SM Higgs
doublet, so there are also two scalar degrees of freedom, h1 (SM-like) and h2

(non-SM-like), that mix through their mass matrix, with an angle α.

• This project was an attempt to investigate if it is possible to distinguish the two
models. In other words we are seeking measurements that could be performed in
near future that could disentangle the two models.
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S =
1√
2

(vS + φS + iA) , H0 =
1√
2

(v + φH + iσH) where H =

(
H+

H0

)
.

V = −µ2
H|H|2 + λH|H|4 − µ2

S|S|2 + λS|S|4 + κ|S|2|H|2 + (µ2S2 + H.c.)

Positivity: λH > 0, λS > 0, κ > −2
√
λHλS

Symmetries:

• µ2 6= 0 breaks U(1) softly to residual Z2 : S → −S,

• rephase S such that Imµ2 = 0 (basis choice),

• V 3 µ2(S2 + S∗ 2), then symmetry S
C→ S∗ (φS → φS and A→ −A) emerges,

• global minimum at 〈S〉 = vS√
2

with vS being real, so C is unbroken and A is a

stable DM candidate, m2
A ∝ µ2, if µ2 → 0 then A becomes a Goldstone boson of

broken U(1),
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S =
1√
2

(vS + φS + iA) , H0 =
1√
2

(v + φH + iσH) where H =

(
H+

H0

)
.

M2 =

 2λHv
2 κvvS 0

κvvS 2λSv
2
S 0

0 0 −4µ2



M2
diag =

(
m2

1 0
0 m2

2

)
, R =

(
cosα − sinα
sinα cosα

)
,

(
h1

h2

)
= R−1

(
φH
φS

)
,

V 3 A
2

2
(2λSvSφS + κvφH) =

A2

2vS
(sinαm2

1h1 + cosαm2
2h2)
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The Vector Dark Matter (VDM) model
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The model:

• extra U(1)X gauge symmetry (AµX), DM candidate: AµX,

• a complex scalar field S, whose vev generates a mass for the U(1)’s vector field,
S = (0,1,1, 1) under U(1)Y × SU(2)L × SU(3)c × U(1)X.

• SM fields neutral under U(1)X,

• in order to ensure stability of the new vector boson a Z2 symmetry is assumed to
forbid U(1)-kinetic mixing between U(1)X and U(1)Y . The extra gauge boson Aµ
and the scalar S transform under Z2 (dark charge conjugation) as follows

AµX
C→ −AµX , S

C→ S∗
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The scalar potential

V = −µ2
H|H|2 + λH|H|4 − µ2

S|S|2 + λS|S|4 + κ|S|2|H|2.

The vector bosons masses:

mW =
1

2
gv, mZ =

1

2

√
g2 + g′2v and mX = gXvS,

where

〈H〉 =

(
0
v√
2

)
and 〈S〉 =

vS√
2

Positivity of the potential implies

λH > 0, λS > 0, κ > −2
√
λHλS.

The minimization conditions for scalar fields

(2λHv
2 + κv2

S − 2µ2
H)v = 0 and (κv2 + 2λSv

2
S − 2µ2

S)vS = 0
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For κ2 < 4λHλS the global minimum is

v2 =
4λSµ

2
H − 2κµ2

S

4λHλS − κ2
and v2

S =
4λHµ

2
S − 2κµ2

H

4λHλS − κ2

Both scalar fields can be expanded around corresponding vev’s as follows

S =
1√
2

(vS + φS + iσS) , H0 =
1√
2

(v + φH + iσH) where H =

(
H+

H0

)
.

The mass squared matrixM2 for the fluctuations (φH, φS) and their eigenvalues read

M2 =

(
2λHv

2 κvvS
κvvS 2λSv

2
S

)
m2
± = λHv

2 + λSv
2
S ±

√
λ2
Sv

4
S − 2λHλSv2v2

S + λ2
Hv

4 + κ2v2v4
S

M2
diag =

(
m2

1 0
0 m2

2

)
, R =

(
cosα − sinα
sinα cosα

)
,

(
h1

h2

)
= R−1

(
φH
φS

)
,
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Direct detection of the Pseudo-Goldstone dark matter

V ⊃ A2

2
(2λSvSφS + κvφH) =

A2

2vS
(sinαm2

1h1 + cosαm2
2h2) ,

A

A

hi

= −iR2i
m2

i

vS

The corresponding amplitude for the spin-independent DM nuclear recoils reads:

N N

A A

h1,2
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The DM direct detection signals are naturally suppressed in the SDM model.

V ⊃ A2

2
(2λSvSφS + κvφH) =

A2

2vS
(sinαm2

1h1 + cosαm2
2h2) ,

A

A

hi

= −iR2i
m2

i

vS

The corresponding amplitude for the spin-independent DM nuclear recoils reads:

iM = −isin 2αfNmN

2vvS

(
m2

1

q2 −m2
1

− m2
2

q2 −m2
2

)
ūN(p4)uN(p2)

≈ −isin 2αfNmN

2vvS

(
m2

1 −m2
2

m2
1m

2
2

)
q2ūN(p4)uN(p2) .
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S =
1√
2

(vs + φS)eiA/vs ,

• A is odd under the Z2 symmetry transformation S ↔ S∗, it is DM candidate.

• The only terms that contain A are the kinetic and the U(1) symmetry softly-
breaking terms:

LA = ∂µS∗∂µS −
M3

√
2

(S + S∗)− µ2(S2 + S∗2)

⊃ 1

2
∂µA∂µA+

1

2

(
4µ2 +

M3

vs

)
A2 +

φS
vs
∂µA∂µA+

(
4µ2 +

M3

2vs

)
φS
vs
A2 ,

so m2
A = −4µ2 −M3/vs.

• Repeatedly integrating by parts and adopting free equations of motion for A and
hi, one finds the pseudo-Goldstone-Higgs vertices as follows

LA ⊃
1

2
(∂µA∂µA−m2

AA
2)− R2i

2vs

(
m2
i +

M3

vS

)
hiA

2
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N N

A A

h1,2

The total cross section σAN :

σ
(tree)
AN ≈ sin2 2α f2

N

3π

m2
N

m2
A

µ6
AN

v2v2
S

(m2
1 −m2

2)2

m4
1m

4
2

v4
A ,

where vA is the A velocity in the lab frame. Since vA ∼ 200 km/s, the total DM
nuclear recoil cross section σAN is greatly suppressed by the factor v4

A ∼ 10−13:

σ
(tree)
AN ∼ 10−70 cm2 � σ

(XENON1T )
AN ∼ 10−46 cm2

⇓
1-loop effects are leading

• if q2 → 0 then loop corrections are expected to be UV finite,

• if m2
A ∝ µ2 → 0 then loop corrections should vanish.
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A A

q q

A

h1,2 h1,2

A A

q q

h1,2

h1,2

A A

g g

A

h1,2 h1,2

t

(a) (b) (c)

Figure 1: Examples of diagrams contributing to DM-nucleon scattering, which are
discarded in our computation. Diagrams (a) and (b) represent the one-loop box
and light-quark-h1;2 vertex corrected diagrams which are ignored due to the multiple
Yukawa coupling suppression, while the diagram (c) is an example of DM-gluon
scattering with two Higgs lines inserted into the top-quark loop, which is assumed to
be subdominant.
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Figure 2: 1-loop diagrams that do not contribute to A-nucleon scattering.

PASCOS 2019, The University of Manchester, UK, July 2nd 2019 15



N N
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Figure 3: 1-loop diagrams contributing to A-nucleon scattering.
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σ
(1)
AN =

f2
N

πv2
H

m2
Nµ

2
AN

m2
A

F2 ,

where the one-loop function F is defined as

F =
V

(1)
AA1cα
m2

1

− V
(1)
AA2sα
m2

2

with V
(1)
AA1 ,AA2 as one-loop corrections to the vertices h1A

2 and h2A
2.

F = −s2α(m2
1 −m2

2)m2
A

128π2vHv3
Sm

2
1m

2
2

[A1C2(0,m2
A,m

2
A,m

2
1,m

2
2,m

2
A)

+A2D3(0, 0,m2
A,m

2
A, 0,m

2
A,m

2
1,m

2
1,m

2
2,m

2
A)

+A3D3(0, 0,m2
A,m

2
A, 0,m

2
A,m

2
1,m

2
2,m

2
2,m

2
A)] ,

Comments:

• The one loop amplitude F is UV finite in the limit of zero momentum transfer
q2 → 0,

• F → 0 for mA → 0.
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Scans over parameter space

Independent parameters: vS, sinα,m2 and mDM (mA or mX).

Parameter Range

Second Higgs - m2 [1,1000] GeV
Dark Matter - mDM [1,1000] GeV
Singlet VEV - vs [1,107] GeV
Mixing angle - α [−π4 ,π4 ]

Table 1: Scan regions for independent parameter’s for both models.

We are searching for regions of the parameter space
that are only populated by one model.
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Collider and/or theoretical constraints:

• The points are generated by the code ScannerS [R. Coimbra, M. O. P. Sampaio,
and R. Santos, “ScannerS: Constraining the phase diagram of a complex scalar
singlet at the LHC”, Eur. Phys. J. C73 (2013) 2428]:

– the potential has to be bounded from below,
– the vacuum is chosen so that the minimum is the global one,
– perturbative unitarity holds.

• The bound on the LHC signal strength µ for the SM Higgs is used to limit cosα,

• BR(h1 → inv) < 24%,

• S, T and U ,

• The collider bounds from LEP, Tevatron and the LHC are imposed via HiggsBounds
[P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, and K. E. Williams, “HiggsBounds:
Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the
Tevatron”,Comput. Phys. Commun. 181 (2010) 138].
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Cosmological constraints:

• DM abundance: (Ωh2)obs
DM = 0.1186 ± 0.002 from Planck Collaboration, here we

require that (Ωh2)A,X < 0.1186 or we adopt 5σ allowed region,

• Direct detection: we apply the latest XENON1T upper bounds for the DM mass
greater than 6 GeV, while for lighter DM particles, the combined limits from
CRESST-II and CDMSlite are utilized for σeff

AN,XN ≡ fA,XσAN,XN , with

fA,X =
(Ωh2)A,X
(Ωh2)obs

DM

,

where (Ωh2)A,X is the calculated DM relic abundance for the SDM (A) or the
VDM (X).

• Indirect detection: for the DM mass range of interest, the Fermi-LAT upper bound
on the DM annihilations from dwarfs is the most stringent. We use the Fermi-LAT
bound on bb̄ when mA,X > mb, and that on light quarks for mA,X < mb.
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Figure 4: m2 versus mDM .

Where the models coexist:
• m2 ' 2mDM (DM annihilation through the non-SM-like resonance h2),
• mDM ' m1/2 (DM annihilation through the SM-like resonance h1),

SDM and VDM could be disentangled by a measurement of mDM and m2.
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Figure 5: DM-nucleon cross-section as a function of the DM mass. Scalar DM-nucleon
nucleon cross-section is computed at one-loop level. The latest results from Xenon1T
are shown as the solid line that makes the upper edge of the plot.

• Suppression of σDM−N for the SDM model,
• h1 and h2 resonance effects for both the SDM and the VDM models, m1 ' 2mDM

and m2 ' 2mDM , respectively.
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ILC signals

e−

e+ Z

χ

χZ

Q

hi

Figure 6: Feynman diagram for e+e− → Zχχ̄, χ denotes the dark particle (χ = A,X).

• P. Ko, H. Yokoya, “Search for Higgs portal DM at the ILC”, JHEP 1608 (2016)
109,

• T. Kamon, P. Ko, J. Li “Characterizing Higgs portal dark matter models at the
ILC”, Eur.Phys.J. C77 (2017) no.9, 652
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e−

e+ Z

χ

χZ

Q

hi

Figure 7: Feynman diagram for e+e− → Zχχ̄, χ denotes the dark particle (χ = A,X).

dσ

dEZ
(EZ) =f(s, EZ) ·

(
sin 2α
vS

)2

·
√

1− 4
m2
DM
Q2 · (m2

1 −m2
2)2 ·Q4

[(Q2 −m2
1)2 + (m1Γ1)2] [(Q2 −m2

2)2 + (m2Γ2)2]
×

×

1 (SDM)

1− 4
m2
X

Q2 + 12
(
m2
X

Q2

)2

(VDM)
,

2

3
≤ 1− 4

m2
X

Q2
+ 12

(
m2
X

Q2

)2

≤ 1

Q2 = s− 2EZ
√
s+m2

Z
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f(s, EZ) ≡ (1− P+P−)(g2
v + g2

a) + 2gvga(P+ − P−)

12 · (2π)3

√
E2
Z −m2

Z

(
2m2

Z + E2
Z

)
×
(

g2

cos θ2
W

1

s−m2
Z

)2

(1)

Q2 = Q2(s, EZ) ≡ s− 2EZ
√
s+m2

Z

EZ(Q2 = m2
i ) = Ei ≡

s−m2
i +m2

Z

2
√
s

.

Emax =
s− 4m2

DM +m2
Z

2
√
s

,
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=
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Figure 8: dσ

dEZ
for the SDM model.

EZ(Q2 = m2
i ) = Ei ≡

s−m2
i +m2

Z

2
√
s

, Emax =
s− 4m2

DM +m2
Z

2
√
s
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The strategy:

1. From the endpoint Emax one can determine mDM :

Emax =
s− 4m2

DM +m2
Z

2
√
s

,

2. In the presence of two poles, m2 could be determined:

EZ(Q2 = m2
2) = E2 ≡

s−m2
2 +m2

Z

2
√
s

.

3. Then ratio

1 <∼
dσSDM
dEZ
dσVDM
dEZ

<∼
3

2

It is typically greater than 1.

4. If m2
i ' 6m2

X the maximal deviation (50%) appears exactly at the i-th pole.
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Background

e−

e+

νe

Z

ν̄e

νe

W

e−

e+

νe, νµ, ντ

ν̄e, ν̄µ, ν̄τ

Z

Z

Figure 9: Exemplary diagrams of the Standard Model background processes. Neutrinos
contribute to missing energy and can therefore mimic dark particles. The background
cross-section could be reduced by polarizing the initial e+ and e− beams.
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Comments

• Only a vicinity of a pole for one of the Higgs bosons, i.e. only events with Z boson
energy within a certain bin around EZ = Ei(

√
s) ≡ (s −m2

i + m2
Z)/(2

√
s) could

be useful.

• For
√
s = 1.5 TeV, mDM = 44.5 GeV, m2 = 102 GeV, vS = 5 TeV and

sinα = 0.31 the separation between the cross-sections for SDM and VDM at the
level of 1σ could be obtained for a bin around EZ = E1(1.5 TeV) with the width
∼ 4.5 GeV.

• Jet energy can be measured in calorimeters with resolution ∼ 3%. Hence, the
minimal size expected for the resolution of the Z energy near the h1 pole at,

– CLIC with
√
s = 1.5 TeV is ∼ 3%× EZ|EZ=E1(1.5 TeV)

= 22.4 GeV,

– CEPC with
√
s = 240 GeV and the same parameters, for the minimal bin

size ∼ 3% × EZ|EZ=E1(240 GeV)
= 3.1 GeV the separation between the two

cross-sections is at the level of 12σ.

Therefore it is fair to conclude that there exist regions of parameters, where the two
scenarios might be disentangled at future e+e− colliders in resonance regions.
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Summary

1. The Abelian VDM model is challenged by a similar SDM model with DM candidate
A that is a pseudo-Goldstone boson related to softly broken U(1), by µ2(S2+S∗ 2),

2. Direct detection efficiently suppressed in the SDM model, σDM−N ∝ v4
A, as

a consequence of A being a pseudo-Goldstone boson, 1-loop calculations were
performed and adopted, for q2 = 0 the 1-loop results are UV finite and vanish in
the limit mA = mDM → 0.

3. In some regions of (mi,mX) space (m2
i ' 6m2

X) the ILC might be useful to
disentangle the models,

4. In some regions of the parameter space only SDM could be realized, in progress.
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Backup slides

The global minimum for the SDM:

v2 =
4λSµ

2
H − 2κ(µ2

S − 2µ2)

4λHλS − κ2
, v2

S =
4λH(µ2

S − 2µ2)− 2κµ2
H

4λHλS − κ2
, v2

A = 0

V1 =
−1

4λHλS − κ2

{
λH(µ2

S − 2µ2)2 + µ2
H

[
λSµ

2
H − κ(µ2

S − 2µ2)
]}

M2 =

 2λHv
2 κvvS 0

κvvS 2λSv
2
S 0

0 0 −4µ2



2λSµ
2
H > κ(µ2

S − 2µ2) and 2λH(µ2
S − 2µ2) > κµ2

H and µ2 < 0
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σ
(1)
AN =

f2
N

πv2
H

m2
Nµ

2
AN

m2
A

F2 ,

where the one-loop function F is defined as

F =
V

(1)
AA1cα
m2

1

− V
(1)
AA2sα
m2

2

with V
(1)
AA1 ,AA2 as one-loop corrections to the vertices h1A

2 and h2A
2.

F = −s2α(m2
1 −m2

2)m2
A

128π2vHv3
Sm

2
1m

2
2

[A1C2(0,m2
A,m

2
A,m

2
1,m

2
2,m

2
A)

+A2D3(0, 0,m2
A,m

2
A, 0,m

2
A,m

2
1,m

2
1,m

2
2,m

2
A)

+A3D3(0, 0,m2
A,m

2
A, 0,m

2
A,m

2
1,m

2
2,m

2
2,m

2
A)]

A1 ≡ 4(m2
1s

2
α +m2

2c
2
α)(2m2

1vHs
2
α + 2m2

2vHc
2
α −m2

1vSs2α +m2
2vSs2α) ,

A2 ≡ −2m4
1sα[(m2

1 + 5m2
2)vScα − (m2

1 −m2
2)(vSc3α + 4vHs

3
α)] ,

A3 ≡ 2m4
2cα[(5m2

1 +m2
2)vSsα − (m2

1 −m2
2)(vSs3α + 4vHc

3
α)] .
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Vacuum stability

V = −µ2
H|H|2 + λH|H|4 − µ2

S|S|2 + λS|S|4 + κ|S|2|H|2

λH(Q) > 0, λS(Q) > 0, κ(Q) + 2
√
λH(Q)λS(Q) > 0
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Figure 10: Running of various parameters at 1- and 2-loop, in solid and dashed lines
respectively. For this choice of parameters λH(Q) > 0 at 2-loop (right panel blue)
but not at 1-loop. λS(Q) is always positive (right panel red), running of κ(Q) is
very limited, however the third positivity condition κ(Q) + 2

√
λH(Q)λS(Q) > 0 is

violated at higher scales even at 2-loops (right panel green).
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The mass of the Higgs boson is known experimentally therefore within the SM the
initial condition for running of λH(Q) is fixed

λH(mt) = M2
h1
/(2v2) = λSM = 0.13

For VDM this is not necessarily the case:

M2
h1

= λHv
2 + λSv

2
S ±

√
λ2
Sv

4
S − 2λHλSv2v2

S + λ2
Hv

4 + κ2v2v4
S.

VDM:

• Larger initial values of λH such that λH(mt) > λSM are allowed delaying the
instability (by shifting up the scale at which λH(Q) < 0).

• Even if the initial λH is smaller than its SM value, λH(mt) < λSM , still there is a
chance to lift the instability scale if appropriate initial value of the portal coupling
κ(mt) is chosen.

β
(1)
λH

= β
SM (1)
λH

+ κ2
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Figure 11: Branching ratio of second Higgs vs. mass of second Higgs. Scalar model
in red, vector model in blue.
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Figure 12: sinα versus m2.
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