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Motivation: drowning by numbers…

The fact is that

GFℏ2

GNc2
∼ 1033

where        - Fermi constant,       - Newton constant GF GN

Quantum complications:

G.F. Giudice, (2008) 155, 0801.2562 

Let         be some heavy mass scale. Then, one expects

δm2
H,X ∼ M2

X

MX

Even if one assumes that there are no heavy thresholds beyond the EW scale, then, naively,

δm2
H,grav. ∼ M2

P
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Framework

Scale Invariance:


No degrees of freedom beyond the EW scale:


Dynamical gravity:

Conjectures:

The idea of reducing an amount of dimensionful parameters as a way towards 
the fundamental theory seems fruitful. Besides, SI can protect the Higgs mass 
against large radiative corrections.

``Minimalistic approach.’’ Experimental data?

Since the Planck mass is involved



!4

Ways to generate the Higgs vev
Coleman-Weinberg mechanism… 
 
 
…comes in tension with experiment in the SM framework. 
But it may work in extensions of the SM: 

Spontaneous symmetry breaking 
 
In fact, both the Planck and the Weak energy scales can be generated classically via 
spontaneous breaking of Scale symmetry. Example: the Higgs-Dilaton model. 
 
 
The hierarchy between the scales is encoded in the hierarchy between the dimensionless 
parameters.

S. R. Coleman, E. J. Weinberg’73; A. D. Linde’76,’77; S. Weinberg’76 

E. Gildener, S. Weinberg’76; K. A. Meissner, H. Nicolai’07; S. Iso, N. Okada, Y. Orikasa’09 …

M. Shaposhnikov and D. Zenhausern’09; J. Garcia-Bellido, J. Rubio, M. Shaposhnikov, D. Zenhausern’13
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EFT approach and beyond
The Effective Field Theory paradigm:

Low energy description of Nature, provided by the SM, can be affected by an 
unknown UV physics only through a finite set of parameters.

This “Naturalness principle” is questioned now in light of the absence of signatures of new 
physics at the LHC.

What if one goes beyond the EFT approach? Many examples are known:

Multiple point criticality principle


Asymptotic safety of gravity


EW vacuum decay

G.F. Giudice, PoS EPS-HEP2013 (2013) 163, 1307.7879 

D. L. Bennett, H. B. Nielsen’94; C. D. Froggatt, H. B. Nielsen’96 

S. Weinberg’09; M. Shaposhnikov, C. Wetterich’09 

V. Branchina, E. Messina, M. Sher’14; F. Bezrukov, M. Shaposhnikov’14 
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EFT approach and beyond
The Effective Field Theory paradigm:

Low energy description of Nature, provided by the SM, can be affected by an 
unknown UV physics only through a finite set of parameters.

This “Naturalness principle” is questioned now in light of the absence of signatures of new 
physics at the LHC.

What if one goes beyond the EFT approach? Many examples are known:

Multiple point criticality principle


Asymptotic safety of gravity


EW vacuum decay

Let’s write something like

where v is the Higgs vev. Then,              .

G.F. Giudice, PoS EPS-HEP2013 (2013) 163, 1307.7879 

v ∼ MPe−B

B ≈ 37

D. L. Bennett, H. B. Nielsen’94; C. D. Froggatt, H. B. Nielsen’96 

S. Weinberg’09; M. Shaposhnikov, C. Wetterich’09 

V. Branchina, E. Messina, M. Sher’14; F. Bezrukov, M. Shaposhnikov’14 
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The idea

⟨φ⟩ ∼ ∫ 𝒟[Measure] φ(0) e−SE(φ,gμν,...)

In Euclidean signature, the time-independent, spatially-homogeneous vev of the scalar field is

Let        be the only classical scale in the theory. Change the variable,MP

φ → MPeφ̄ , φ ≳ MP

and evaluate the Path integral via saddle points of

ℬ = − φ̄(0) + SE(φ̄, gμν, . . . )

Apply the Saddle-Point Approximation:

⟨φ⟩ = MPe−B × [Fluctuation factor]

For this to work, it is necessary to find

appropriate saddle points of       ,

semiclassical parameter that would justify the SPA,

physical argumentation that would justify the change of the scalar field variable.

ℬ



Theories we consider
are within the framework outlined and motivated by phenomenology. For example:

Models of Higgs inflation, with the scalar-gravity sector of the form

ℒE

g
= −

1
2

(M2
P + ξφ2)R +

1
2

(∂φ)2 + λφ4/4

…and with some modifications at high energy scales.
F. Bezrukov, D. Gorbunov, M. Shaposhnikov, 0812.3622
J. Garcia-Bellido, D. G. Figueroa, J. Rubio, 0812.4624
F. Bezrukov, J. Rubio, M. Shaposhnikov, 1412.3811

Models of Higgs-Dilaton inflation, with the scalar-gravity sector of the form

ℒE

g
= −

1
2

(ξχ χ2 + ξhφ2)R +
1
2

(∂χ)2 +
1
2

(∂φ)2 + λφ4/4

M. Shaposhnikov and D. Zenhausern, 0809.3395
J. Garcia-Bellido, J. Rubio, M. Shaposhnikov, D. Zenhausern, 1107.2163
F. Bezrukov, G. K. Karananas, J. Rubio, M. Shaposhnikov, 1212.4148

…and with some modifications at high energy scales.

!9
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Decomposing the Instanton
Recall that we are looking for saddles of ℬ = − φ̄(0) + SE(φ̄, gμν, . . . )

The source term The instanton is singular

Physical singularity?
This is not the first time such solutions are encountered, see

S. W. Hawking, N. Turok, arXiv:hep-th/9802030

J. Garriga, arXiv:hep-th/9803210

A. Vilenkin, arXiv:hep-th/9803084

…

It depends…
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Decomposing the Instanton

B = BHE + BLE

The core, governed by UV structure of the theory The tail, sensitive to ``low energies’’

Several options are possible:

                           - no sensitivity to the SM parameters (good and bad)


                           - all energy scales contribute (bad and good)

B ≈ BHE

BLE ≈ BHE

1803.08907, 1804.06376  

1903.11317

Note: We do not argue that the models we choose to test the mechanism can indeed be 
embedded into the UV complete theory of gravity.

Recall that we are looking for saddles of ℬ = − φ̄(0) + SE(φ̄, gμν, . . . )

The source term The instanton is singular

Physical singularity?
It depends…

This is not the first time such solutions are encountered, see
S. W. Hawking, N. Turok, arXiv:hep-th/9802030

J. Garriga, arXiv:hep-th/9803210

A. Vilenkin, arXiv:hep-th/9803084

…

The instanton probes all energy scales:
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Ingredients identified

For successful implementation of the mechanism, it seems important to have

Non-minimal coupling of the scalar field to gravity


Approximate conformal invariance at high energies


Higher-dimensional derivative operators

ℒE

g
= −

1
2

(M2
P + ξφ2)R +

1
2

(∂φ)2 + V(φ)For instance:

In fact, B ∼
1

deviation from the conformal point in UV

∼ (∂φ)4 , (∂φ)2(∂χ)2 , . . .

They are necessary to regularize the otherwise divergent (singular) instanton.
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Outlook

Physical implications of (singular) instantons


Correlation functions via (singular) instantons


…




Thank you!
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Just one example: Higgs inflation scenario

ℒJ

g
= −

1
2

(M2
P + ξφ2)R +

1
2

(∂φ)2 + V

g̃μν = Ω2gμν , Ω2 =
M2

P + ξφ2

M2
P

, φ = MPeφ̄/MP

ℒE

g̃
= −

1
2

M2
PR̃ +

1
2a

(∂̃φ̄)2 + VΩ−4 a ⟶ aSI =
1

1/ξ + 6

SI regime

Lagrangian of the model:

Some fields redefinition:

``Einstein frame’’ Lagrangian:

V =
λ
4

φ4

(inspired by Higgs inflation)

to make the kinetic term canonicalto get rid of the non-minimal coupling

We will find that the crucial ingredient of the theory

admitting the instantons with the desired properties is the

non-minimal coupling of the Higgs field to the Ricci scalar.

We will also find that the instantons generating the large

hierarchy of scales favour the (approximate) Weyl invari-

ance of the theory for large values of the scalar field.

The paper is organized as follows. In sec. 2 we in-

troduce a simple model describing the dynamics of the

gravitational and the classically massless scalar fields. We

analyze euclidean classical configurations arising in this

model, and discuss their possible influence on the vev of

the scalar field. The results of the analysis motivate us to

introduce certain modifications into the model. In sec. 3

we incorporate these modifications step by step. We find

that the contribution of a certain classical configuration

(the singular instanton) to the vev of the scalar field can

actually make the latter non-zero and, at the same time,

many orders of magnitude smaller than the Planck scale.

In sec. 4 we apply our findings to the EW hierarchy prob-

lem by identifying the scalar field with the Higgs field, and

discuss the inclusion of other SM degrees of freedom. Fi-

nally, sec. 5 is dedicated to a general discussion of the

non-perturbative mechanism. In particular, we discuss to

what extent the toy models studied in sec. 3 can be gen-

eralized without spoiling the mechanism.

2. The simple model

In the euclidean signature, the vev of the scalar field '

is evaluated as6

h'i ⇠

Z
DAD'Dgµ⌫'e

�SE . (1)

Here A denotes the collection of fields of the model un-

der consideration, other than ' and gµ⌫ , and SE is the

euclidean action of the model. Should the model admit

the classical background of the form ' = 0, gµ⌫ = �µ⌫ ,

the conventional perturbation theory built upon it can in

principle provide h'i with a nonzero value. However, as

was discussed in sec. 1, identifying ' with the Higgs field

and the low energy limit of the model at hand with the

(CI) SM and GR, one finds that radiative corrections to

the Higgs vev around the flat background do not bring it

to the observed value.7 Therefore, we are interested in

possible nontrivial classical configur
ations that would con-

tribute to the vev h'i. We restrict the attention to the

configurations built from the scalar and the metric fields,

while other degrees of freedom present in the theory are

6In this paper, we adopt the euclidean the path integral. Because

of the presence of gravity, it must be treated with caution [35]. We

assume that quantum gravity resolves possible issues arising when

using this formulation; see also [36].

7Here we do not discuss the presence of the cos
mological constant,

since the latter is irrelevant for our analysis
. We just note that it can

be included into consideration without spoiling the (classical) CI of

the theory (see [37–39] and references therein).

Figure 1: The regions of magnitudes of the scalar field of the model

(2) with the condition (4) implemented.

kept classically at their vacuum values. Furthermore, we

limit the analysis to the main exponential contribution to

the path integral in eq. (1). This allows us to consider the

part of the theory comprising ' and gµ⌫ only. In sec. 4

we will comment on implications of our findings to the SM

fields other than the Higgs field.

As a warm-up, in this section we study a simple model

containing the real scalar field ' coupled to dynamical

gravity. The purpose is to elucidate important proper-

ties of euclidean classical configurations that appear
in the

theories with a non-minimal coupling of the scalar field to

gravity. We take the following Lagrangian
8

L',g

p
g

= �
1

2
(M2

P
+ ⇠'

2)R+
1

2
(@')2 + V (') (2)

with
V (') =

�

4
'
4 (3)

and ⇠ > 0. The scalar sector of the model, represented

by the last two terms in eq. (2), exhibits global confor-

mal invariance. Addition of gravity and the scalar-gravity

interaction (the first two terms) breaks this symmetry ex-

plicitly. In the limit |'| � MP /
p
⇠, the global scale in-

variance (SI) is acquired. Overall, the model (2) serves is

a good prototype of the Higgs-gravity sector of a theory

we are eventually interested in. Of course, in a more re-

alistic setting operators of higher dimensions suppressed

by a proper cuto↵ must be added to the Lagrangian (2).

We will proceed with the study of particular types of such

operators in sec. 3. Finally, the non-minimal coupling

constant ⇠ and the quartic self-coupling constant � can be

taken as functions of '. The '-dependence would mimic

their RG-evolution once extra degrees of freedom are in-

cluded into the theory, that are coupled to the scalar field.

For the sake of simplicity, we require

p
⇠ � 1 , (4)

which provides us with a good separation of the Planck and

the scale symmetry restoration scales. In what follows, we

will refer to the range of magnitudes |'| � MP /
p
⇠ as the

(classically) SI regime of the model, while the sub-range

|'| � MP will be referred to as the large-' regime (see

fig. 1).

8The euclidean action SE =
R
d
4xL',g of the model must be

accompanied with the proper boundary term (see, e.g., [40]). Since

the latter will not be relevant for our purposes, in what follows we

will omit it.

3

SI regime
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ℒJ

g
= −

1
2

(M2
P + ξφ2)R +

1
2

(∂φ)2 + V

g̃μν = Ω2gμν , Ω2 =
M2

P + ξφ2

M2
P

, φ = MPeφ̄/MP

ℒE

g̃
= −

1
2

M2
PR̃ +

1
2a

(∂̃φ̄)2 + VΩ−4

ds̃2 = f 2(r)dr2 + r2dΩ2
3

r3φ̄′�
faSI

= −
1

MP

φ̄′� ∼ MPr−1

Figure 2: Two featured singular configurations of the model (6). The shot painted blue matches the scalar field source in the r.h.s. of eq.
(22), hence it is a valid singular instanton. The shot painted green is the one with the large euclidean action; for illustration, we choose for it
S̄E = 40. We take the potential for the scalar field coinciding with the (RG-improved) Higgs potential in the SM with the central values of
the top quark mass mt = 172.25 GeV [50], the Higgs mass mH = 125.09 GeV [51], and the field-dependent normalization point µ = '̄. The
left panel shows the short-distance asymptotics of the relevant combination of the fields, the dashed line marks the value (6 + 1/⇠)�1. The
right panel shows the behavior of '̄ as the singularity is approached. For illustrative purposes, the bounce is also plotted in red.

The field redefinition (13) results in the appearance
of the desired source term in the process of evaluation of
the vev h'i. Indeed, the corresponding part of the path
integral in eq. (1) becomes, schematically,
Z

'&MP /
p
⇠

D''e
�SE ! MP

Z

'̄&MP log(1/
p
⇠)
D'̄Je

�W
,

(14)
W = �'̄(0)/MP + SE (15)

with J the corresponding Jacobian, and we used the trans-
lational invariance of the theory to put the instantaneous
source of the scalar field at the origin of coordinates. We
now consider W as a functional whose saddle points are
to be studied. Introducing the radial delta-function �(⇢)
such that '̄(0) =

R
d⇢�(⇢)'̄(⇢), we find the modification of

eqs. (10) in the large-' (or, equivalently, large-'̄) regime,

@⇢

✓
⇢
3
'̄
0

faSI

◆
= �

1

MP

�(⇢) , f
2 = 1�

⇢
2
'̄
02

6aSIM
2
P

, (16)

where aSI is given in eq. (11), and the asymptotic behavior
of the scalar field is now

'̄ = �MP

p
6aSI log ⇢MP + C , ⇢ ! 0 (17)

with C a constant used to match with the asymptotics (9)
at large ⇢. We observe that the exponentiation of the '-
variable leads to the fixation of the position of the center
of the singular shots and makes one of them the legitimate
solution of the variational problem �W/�'̄ = 0 with the
boundary condition (9).15 In what follows, we will refer
to this solution as the singular instanton. To simplify the

15Note also that introducing a point source prefers maximally-
symmetric configurations seeded around it. Should the less sym-
metric configurations exist, we assume that their contribution to the
path integral is suppressed compared to the O(4)-symmetric case, cf.
footnote on p.4.

consideration, in the rest of the paper we will work with
the '̄-variable in the entire range of magnitudes, bearing
in mind that, by construction, it carries the valid degree
of freedom only at '̄ & MP log(1/

p
⇠). We would like to

use the singular instanton of this type as a saddle point of
the functional W , that contributes to the vev h'i. In the
saddle-point approximation (SPA), this amounts to saying
that

h'i ⇡ MP e
�W̄

, (18)

where W̄ is the value of W computed on the instanton.
Formula (18) manifests the appearance of a new scale

in the model (6). We are interested in the case when
this scale is much smaller than the original scale MP (or
MP /

p
⇠). For this to happen, one should require

W̄ � 1 . (19)

Of course, if in a particular situation one reveals that W̄ is
nearly zero or negative, the SPA is not applicable, and eq.
(18) is not valid. The possible interpretation of this case
is that the non-perturbative e↵ects of quantum gravity are
strong, and, hence, no new scale appears. If, on the other
hand, eq. (19) is fulfilled, these e↵ects are suppressed, and
the hierarchy of scales is generated. Our goal for the rest
of this section is to find when it is possible to satisfy eq.
(19) in the model (6) or its modifications.

3.2. Attempting to compute the vev in the simple model

In trying to compute W̄ in the model (6), one immedi-
ately encounters multiple issues. We describe them here,
and in sec. 3.3 and 3.4 the large-'̄ modifications of the
model are studied with the aim to cure them.

(i) It is immediately seen from eq. (17) that '̄(0) = 1,
hence W̄ is divergent. In order to extract a meaningful in-
formation about the contribution of the singular instanton
to the vev h'i, an accurate treatment of this divergence is
required.

5

φ̄(0) = ∞The problem:

S′� = − φ̄(0)/MP + S

a ⟶ aSI =
1

1/ξ + 6

SI regime

Metric ansatz:

EoM for      in the SI regime:

Lagrangian of the model:

Some fields redefinition:

``Einstein frame’’ Lagrangian:

Action to vary:

Short-distance asymptotics of the instanton:

φ̄
rMP

V =
λ
4

φ4

The tunneling solution

The singular instanton
A generic ``shot’’

(inspired by Higgs inflation)

to make the kinetic term canonicalto get rid of the non-minimal coupling

We will find that the crucial ingredient of the theory

admitting the instantons with the desired properties is the

non-minimal coupling of the Higgs field to the Ricci scalar.

We will also find that the instantons generating the large

hierarchy of scales favour the (approximate) Weyl invari-

ance of the theory for large values of the scalar field.

The paper is organized as follows. In sec. 2 we in-

troduce a simple model describing the dynamics of the

gravitational and the classically massless scalar fields. We

analyze euclidean classical configurations arising in this

model, and discuss their possible influence on the vev of

the scalar field. The results of the analysis motivate us to

introduce certain modifications into the model. In sec. 3

we incorporate these modifications step by step. We find

that the contribution of a certain classical configuration

(the singular instanton) to the vev of the scalar field can

actually make the latter non-zero and, at the same time,

many orders of magnitude smaller than the Planck scale.

In sec. 4 we apply our findings to the EW hierarchy prob-

lem by identifying the scalar field with the Higgs field, and

discuss the inclusion of other SM degrees of freedom. Fi-

nally, sec. 5 is dedicated to a general discussion of the

non-perturbative mechanism. In particular, we discuss to

what extent the toy models studied in sec. 3 can be gen-

eralized without spoiling the mechanism.

2. The simple model

In the euclidean signature, the vev of the scalar field '

is evaluated as6

h'i ⇠

Z
DAD'Dgµ⌫'e

�SE . (1)

Here A denotes the collection of fields of the model un-

der consideration, other than ' and gµ⌫ , and SE is the

euclidean action of the model. Should the model admit

the classical background of the form ' = 0, gµ⌫ = �µ⌫ ,

the conventional perturbation theory built upon it can in

principle provide h'i with a nonzero value. However, as

was discussed in sec. 1, identifying ' with the Higgs field

and the low energy limit of the model at hand with the

(CI) SM and GR, one finds that radiative corrections to

the Higgs vev around the flat background do not bring it

to the observed value.7 Therefore, we are interested in

possible nontrivial classical configur
ations that would con-

tribute to the vev h'i. We restrict the attention to the

configurations built from the scalar and the metric fields,

while other degrees of freedom present in the theory are

6In this paper, we adopt the euclidean the path integral. Because

of the presence of gravity, it must be treated with caution [35]. We

assume that quantum gravity resolves possible issues arising when

using this formulation; see also [36].

7Here we do not discuss the presence of the cos
mological constant,

since the latter is irrelevant for our analysis
. We just note that it can

be included into consideration without spoiling the (classical) CI of

the theory (see [37–39] and references therein).

Figure 1: The regions of magnitudes of the scalar field of the model

(2) with the condition (4) implemented.

kept classically at their vacuum values. Furthermore, we

limit the analysis to the main exponential contribution to

the path integral in eq. (1). This allows us to consider the

part of the theory comprising ' and gµ⌫ only. In sec. 4

we will comment on implications of our findings to the SM

fields other than the Higgs field.

As a warm-up, in this section we study a simple model

containing the real scalar field ' coupled to dynamical

gravity. The purpose is to elucidate important proper-

ties of euclidean classical configurations that appear
in the

theories with a non-minimal coupling of the scalar field to

gravity. We take the following Lagrangian
8

L',g

p
g

= �
1

2
(M2

P
+ ⇠'

2)R+
1

2
(@')2 + V (') (2)

with
V (') =

�

4
'
4 (3)

and ⇠ > 0. The scalar sector of the model, represented

by the last two terms in eq. (2), exhibits global confor-

mal invariance. Addition of gravity and the scalar-gravity

interaction (the first two terms) breaks this symmetry ex-

plicitly. In the limit |'| � MP /
p
⇠, the global scale in-

variance (SI) is acquired. Overall, the model (2) serves is

a good prototype of the Higgs-gravity sector of a theory

we are eventually interested in. Of course, in a more re-

alistic setting operators of higher dimensions suppressed

by a proper cuto↵ must be added to the Lagrangian (2).

We will proceed with the study of particular types of such

operators in sec. 3. Finally, the non-minimal coupling

constant ⇠ and the quartic self-coupling constant � can be

taken as functions of '. The '-dependence would mimic

their RG-evolution once extra degrees of freedom are in-

cluded into the theory, that are coupled to the scalar field.

For the sake of simplicity, we require

p
⇠ � 1 , (4)

which provides us with a good separation of the Planck and

the scale symmetry restoration scales. In what follows, we

will refer to the range of magnitudes |'| � MP /
p
⇠ as the

(classically) SI regime of the model, while the sub-range

|'| � MP will be referred to as the large-' regime (see

fig. 1).

8The euclidean action SE =
R
d
4xL',g of the model must be

accompanied with the proper boundary term (see, e.g., [40]). Since

the latter will not be relevant for our purposes, in what follows we

will omit it.

3

SI regime

the source provides 
an additional 
boundary condition

Just one example: Higgs inflation scenario
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+δn
(∂φ)2n

(MPΩ)4n−4

δℒE

g̃
⟶ δ2

(∂̃φ̄)4

ξ2M4
P

4δ
M4

P

ρ3φ̄′�3

f 3
+

φ̄′� ∼ M2
Pδ−1/6

|B | = 𝒪(1)

Figure 5: The family of singular instantons in the model specified by eqs. (34), (35), to which the Weyl rescaling (5) is applied. The left
panel demonstrates the finite short-distance asymptotics of the instantons, the dashed line shows the case � = 0. The right panel shows the
corresponding Lagrangians. We observe an agreement with eqs. (29) and (30). One also sees that the sizeable contribution to the euclidean
action comes from the large-'̄ region. The potential for the scalar field and the value of ⇠ are the same as in fig. 2.

dependence of W̄ on aSI ,18

W̄ ⇠ a
1/2
SI

. (32)

Hence, one can expect that the large values of W can be
achieved by tuning the value of aSI . However, from eq.
(11) we see that aSI is confined in the region

0 < aSI < 1/6 , (33)

which makes it impossible to fulfill relation (19). Hence, no
hierarchy is generated in the model (6)+(25). The possible
resolution of this issue is to look for further modifications
of the model in the large-'̄ regime, that would lead to the
modification of the allowable range of values of aSI . To
this end, consider the following Lagrangian,

L',g
p
g

= �
M

2
P

2
F ('/MP )R+

1

2
G('/MP )(@')

2

+ �⇠
2 (@')4

(MP⌦)4
+

�

4
'
4
, (34)

where F and G are rational functions of '/MP taken so
as to reproduce the Lagrangian (2) in the low-' limit, and
⌦ is given in eq. (5). The simplest, but not unique, possi-
bility leading to the desired change of the range of aSI , is
to choose

F = 1 + ⇠'
2
/M

2
P
, G =

1 + '
2
/M

2
P

1 + '2/M2
P

(35)

with  some constant. Then, one can show that the coef-
ficient aSI becomes field-dependent,

aSI =
1

↵/⇠ + 6
, (36)

18We made use of the fact that the contribution of the singular
instanton to W outside the large-'̄ region is negligible. In what
follows, this will remain true.

where, in terms of the field variable '̄,

↵ =
1

2
(1� tanh('̄/MP )) +



2
(1 + tanh('̄/MP )) . (37)

Hence, the asymptotic value of aSI in the large-'̄ regime
modifies to

aSI ! aHE =
1

/⇠ + 6
, ⇢ ! 0 , h̄ & MP , (38)

as compared with eq. (11). By tuning , one can make
aHE as large as necessary, thus “enhancing” the strength
of the scalar field source by a suitable amount. Finally, eq.
(32) becomes

W̄ ⇠ a
1/2
HE

. (39)

Let us now study the singular instantons arising in the
model specified by eqs. (34), (35), to which the Weyl
rescaling (5) is applied. For simplicity, we assume that
the transition between the low-'̄ and the large-'̄ values
of aSI occurs before the asymptotics of the instanton be-
comes dominated by the quartic derivative term (25). This
provides us with a separation of regions at which the quar-
tic derivative operator and the polynomial operators start
a↵ecting the behavior of the solution. According to eq.
(30), the requirement of such separation puts an upper
bound on �,

a
1/2
HE

�
1/6

⌧ 1 , (40)

which can easily be satisfied in our analysis. Overall, we
look for a classical configuration obeying the asymptotics
(9) at large distances, and eq. (26) with aSI replaced by
aHE according to eq. (38) — at short distances.

Bearing in mind the insensitivity of the singular shot to
the details of the model below the large-'̄ regime, which
was discussed in sec. 3.2, we focus on the variation of
the large-'̄ parameters aHE and �. Then, numerics shows
that it is possible for a fixed value of � to choose aHE so
that relation (19) is satisfied. An example of the solution
is presented in fig. 4. As expected from the discussion
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ℒJ

g
= −

1
2

(M2
P + ξφ2)R +

1
2

(∂φ)2 + V

g̃μν = Ω2gμν , Ω2 =
M2

P + ξφ2

M2
P

, φ = MPeφ̄/MP

ℒE

g̃
= −

1
2

M2
PR̃ +

1
2a

(∂̃φ̄)2 + VΩ−4

To cure the problem, let us modify the Lagrangian:

Some fields redefinition:

``Einstein frame’’ Lagrangian:

a ⟶ aSI =
1

1/ξ + 6

SI regimeSI regime

ds̃2 = f 2(r)dr2 + r2dΩ2
3

r3φ̄′�
faSI

= −
1

MP

S′� = − φ̄(0)/MP + S

Metric ansatz:

Action to vary:

EoM for      in the SI regime:φ̄

Short-distance asymptotics of the instanton:

δ = δ2/ξ2

The problem:

rMP

δ = 0

Different colors for different δ

some operator with higher degree of the 
derivative of    . For example, takeφ n = 2

V =
λ
4

φ4

Just one example: Higgs inflation scenario



small, the e↵ects of the strong-gravity regime of the theory on the vev of ' are suppressed,
and the hierarchy of scales emerges.

To finish the analysis, one should supplement the Higgs-gravity Lagrangian (6) with the
rest of the low-energy content. As soon as the leading order of the SPA is concerned, the fields
which do not participate in building the instanton configuration can be ignored. Fluctuations
of the fields a↵ect the prefactor which in eq. (2) is set to be equal to MP. We expect that the
higher-order corrections in the SPA do not spoil the leading-order calculation.

3 Discussion and Conclusion

Let us summarize our findings. In this report, we attempted to look at the hierarchy of scales
(1) as emerging due to the non-perturbative e↵ect relating the low-energy and the Planck-
scale physics. We argued that the weak scale can appear as a result of the exponential sup-
pression of the Planck mass due to instantons. By construction, the mechanism does not
require a fine-tuning among the parameters of the theory.

The e↵ect we considered depends strongly on the features of the theory in the strong-
gravity regime. The example of the previous section demonstrates some of the properties that
are important in order for the mechanism to work successfully:

• The non-minimal coupling of the scalar field to gravity, controlled by the parameter ⇠. It
allowed us to change the scalar field variable according to eq. (4).

• In the high-energy regime, the non-minimal coupling lies close to the conformal limit.
Indeed, in this regime the theory is written in terms of the original variables as follows,

L',g,HEp
g
=

1
2

1
6 � aHE

'2R +
1
2

(@')2 + �
(@')4

'4 . (22)

According to eq. (21), the large suppression rate of the Planck mass is achieved if
p

aHE ⌧
1, which implies the near-conformal coupling of ' to the Ricci scalar.

• In the high-energy regime, the theory contains the scale-invariant higher-dimensional op-
erators. They regularize the otherwise divergent instanton and provide the dominant con-
tribution to the instanton action.

Figure 1: The high-energy part of the suppression rate B plotted against the coe�cient a�1
HE .

An agreement with eq. (21) is observed. Here we take � = 5 · 10�8 in order to ensure the
separation of scales at which ã changes and at which the quartic derivative operator in eq.
(11) starts dominating.
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BHE ∼ aHE B ≈ BHE

+δn
(∂φ)2n

(MPΩ)4n−4

δℒE

g̃
⟶ δ2

(∂̃φ̄)4

ξ2M4
P

ℒJ

g
= −

1
2

(M2
P + ξφ2)R

g̃μν = Ω2gμν , Ω2 =
M2

P + ξφ2

M2
P

, φ = MPeφ̄/MP

ℒE

g̃
= −

1
2

M2
PR̃

Some fields redefinition:

``Einstein frame’’ Lagrangian:

+
1
2

F(φ/MP)(∂φ)2

a′� ⟶ aHE ≫ aSI

large-    regimeSI regime

+V

+VΩ−4+
1

2a′�
(∂̃φ̄)2

4δ
M4

P

ρ3φ̄′�3

f 3
+

ds̃2 = f 2(r)dr2 + r2dΩ2
3

r3φ̄′�
faHE

S′� = − φ̄(0)/MP + S

Metric ansatz:

Action to vary:

EoM for      in the HE regime:φ̄

δ = δ2/ξ2

= −
1

MP

The result: ⟨φ⟩ ∼ MPe−B
aHE

V =
λ
4

φ4

some polynomial operator

φ

To cure the problem, let us modify the Lagrangian:

Here ξ ∼ 103 , δ ∼ 10−8

Just one example: Higgs inflation scenario


