Isocurvature modes and the intrinsic CMB bispectrum Pedro Carrilho

Based on arxiv:1803.08939, arxiv:1902.00459 and ongoing work with Karim Malik and David Mulryne

Contents

- The early Universe
- Isocurvature initial conditions
- Intrinsic Bispectrum of the CMB
- Conclusions

The early Universe

- The physics of the early Universe is not directly observable.
 - Experiments measure only initial conditions;
 - Assuming power law:

$$\mathcal{P}_{\zeta}(k) = A_s \left(\frac{k}{k^*}\right)^{n_s - 1}$$

 $\log(10^{10}A_s) = 3.044 \pm 0.014$ $n_s = 0.9649 \pm 0.0042$

The early Universe

- Single-field, slow-roll inflation is a good fit to observations;
- Multi-field inflation is better motivated!
- Multiple d.o.f. allow for:
 - Non-Gaussianity
 - Isocurvatures

• A detection would increase our knowledge of the early Universe!

- What are the properties of each mode after reheating?
- Adiabatic mode:

$$\zeta \neq 0$$
 $S_{ij} = \frac{\delta_i}{1+w_i} - \frac{\delta_j}{1+w_j} = 0$

• Isocurvature modes:

$$\zeta = 0 \qquad S_{ij} = 0 \qquad S_{iso} \neq 0$$

- 4 types at first order:
 - Baryon, CDM, ν density and ν velocity modes -2

Isocurvature

• Constraints on matter isocurvatures from Planck 2018

- Low amplitude, $\leq 1\%$ contribution to CMB variance.
- If present, correlation with adiabatic mode is very small.

$$\beta_{iso} \equiv \frac{\mathcal{P}_I}{\mathcal{P}_{\mathcal{R}} + \mathcal{P}_I}$$

$$\cos\Delta \equiv \frac{\mathcal{P}_{RI}}{\sqrt{\mathcal{P}_{\mathcal{R}}\mathcal{P}_{I}}}$$

- Compensated Isocurvature
 - Mode with

$$S_{M\gamma} = \Omega_b S_{b\gamma} + \Omega_c S_{c\gamma} = 0$$

$$S_{c\gamma} \neq 0$$
 $S_{b\gamma} \neq 0$

- No linear effect on CMB;
- Similar effect to lensing;

• Amplitude can be $10^6 \times$ larger than adiabatic mode!

PEDRO CARRILHO

- 2nd order Boltz. codes need new initial conditions for isocurvatures;
- Ex: mix between CI and adiabatic:

$$\begin{split} \nu_{\gamma b} &= \frac{\Omega_c}{\Omega_\gamma} \frac{k^2 + k_1^2 - k_2^2}{96k^2} k_2^2 \omega \tau^4 \, \delta^0_{CI,k_1} \psi^0_{k_2} \\ \delta_b &= \frac{\Omega_c}{20\Omega_b} (5 - \omega \tau) \, (k_2 \tau)^2 \, \delta^0_{CI,k_1} \psi^0_{k_2} \\ \delta_c &= -\frac{1}{20} (5 - \omega \tau) \, (k_2 \tau)^2 \, \delta^0_{CI,k_1} \psi^0_{k_2} \end{split}$$

10 more solutions in arXiv:1803.08939

• Cl enhances magnetogenesis:

Other modes in arXiv:1902.00459

 The CMB bispectrum offers a window into the non-linear physics of the early Universe

 $\langle TTT\rangle \sim \langle \zeta\zeta\zeta\rangle$

Planck has constrained 3 templates:

$$f_{NL}^{local} = -0.9 \pm 5.1$$
$$f_{NL}^{equil} = -26 \pm 47$$
$$f_{NL}^{ortho} = -38 \pm 24$$

• But no primordial signal found yet!

• But it also probes the non-linear evolution after inflation, even with Gaussian initial conditions:

$$TTT\rangle \sim \mathcal{T}^{(1)^{3}} \langle \zeta \zeta \zeta \rangle + \mathcal{T}^{(2)} \mathcal{T}^{(1)^{2}} \langle \zeta \zeta \rangle^{2}$$

- Lensing-ISW contribution detected: $f_{NL}^{lensing} = 0.90 \pm 0.26$ $\Delta f_{NL}^{local} = 5.0$
- Large bias must be subtracted!
- Other contributions may be found in future.
- **Aim:** Compute signal from isocurvatures!

[Planck 2018, Constraints on non-Gaussianity]

• We compute the bispectrum numerically using SONG (no lensing).

$$B_{\ell_1 \ell_2 \ell_3} \propto \int \mathcal{T}_i^{(1)} \mathcal{T}_j^{(1)} \mathcal{T}_{kl}^{(2)} P_{ik} P_{jl}$$
 $i, j, k, l = \text{Ad, BI, CDI, etc}$

- Adiabatic result [Huang et al (2013), Su et al (2013), Pettinari et al (2013), etc]:
 - Mostly squeezed;
 - For Planck

$$\Delta f_{NL}^{local} = 0.33$$

S/N = 0.34

• S/N = 1 for CVL at $\ell_{\rm max} = 3000$

• Ad + CDM isocurvature ($n_i = 1$) result:

- Strictly positive contribution from Ad x CDI mixed mode.
- Negligible contribution in the equilateral limit.

• Ad + compensated isocurvature ($n_{CI} = 1$, $\cos \Delta_{\zeta CI} = 0$) result:

• No signal above adiabatic: $B_{\ell_1\ell_2\ell_3}^{CI} \propto \int \mathcal{T}_{CI}^{(1)} \mathcal{T}_{Ad}^{(1)} \mathcal{T}_{CIAd}^{(2)} P_{CI}P_{Ad} = 0!$

• Allows us to test of the code.

• Ad + compensated isocurvature ($n_{CI} = 1$, $\cos \Delta_{\zeta CI} = \pm 1$) result:

• Bispectrum is amplified by $\sim f_{CI}/5$ from adiabatic!

• Ad + compensated isocurvature ($n_{CI} = 1$, $\cos \Delta_{\zeta CI} = \pm 1$) result:

• Polarization bispectrum also amplified by $\sim f_{CI}/5$ from adiabatic!

• Ad + compensated isocurvature ($n_{CI} = 1$, $\cos \Delta_{\zeta CI} = \pm 1$) result:

400000

200000

-200000

-400000

CIP A=1000/200 (cos=1) CIP A=1000/200 (cos=-1)

 $\ell_1 = 6$,

1500

1000

CIP A=5(cos=1)

500

 $(\ell(\ell+1)^2/(2\pi)^2 B_{6\ell\ell} \ (\mu K^3)$

• Shape of the signal also similar

$$B_T^{CI} \approx -\frac{f_{CI}}{5} \cos \Delta_{\zeta CI} B_T^{Ad}$$

• Bias on local template:

$$\Delta f_{NL}^{local} \sim -\frac{f_{CI}}{15} \cos \Delta_{\zeta CI}$$

• Given non-observation of this signal:

 $f_{CI} \cos \Delta_{\zeta CI} \lesssim 75$

2000

Conclusions

- We can now calculate non-linear effects of isocurvatures!
- Isocurvatures in CMB bispectrum:
 - Small effects for single isocurvatures (but may have increased bias for f_{NL}^{local});
 - Large effect of compensated isocurvature usable for constraints!
- Future Work:
 - Estimate lensing-ISW contribution for generic isocurvatures;
 - Study of degeneracy between lensing and compensated isocurvature effect.

Isocurvature modes and the intrinsic CMB bispectrum

Pedro Carrilho

QUESTIONS?

Based on arxiv:1803.08939, arxiv:1902.00459 and ongoing work with Karim Malik and David Mulryne

Queen Mary **University of London**