Dark Matter from a vector field in the fundamental representation of $SU(2)_L$

Felipe Rojas Abatte

Universidad Técnica Federico Santa María - Chile Southampton University - England

July 1, 2019

XXV International Symposium PASCOS 2019

Southampton

Out line

- 1 Description and main aspects of the model
- 2 Theoretical and physical Constraints
- Oescription of the parameter space
- Oark Matter signatures at LHC
- 6 Conclusions

Dark Matter from a vector field in the fundamental representation of $SU(2)_L$

Bastian Díaz Sáes - Alfonso R. Zerwekh - Felipe Rojas-Abatte

Phys.Rev. D99 (2019) no.7, 075026, arXiv:1810.06375 [hep-ph]

We considered a simplified DM model in which we introduce a new extra vector doublet V_{μ} transforming with the same quantum numbers as the Higgs field under the gauge symmetry group $SU(3)_c \times SU(2)_L \times U(1)_Y$

$$V_{\mu} = \begin{pmatrix} V_{\mu}^{+} \\ V_{\mu}^{o} \end{pmatrix} = \begin{pmatrix} V_{\mu}^{+} \\ \frac{V_{\mu}^{1} + iV_{\mu}^{2}}{\sqrt{2}} \end{pmatrix} \sim (1, 2, 1/2)$$

The most general Lagrangian respecting the SM gauge symmetry containing this new vector with operators up to dimension four is

$$\mathcal{L} = -\frac{1}{2} (D_{\mu} V_{\nu} - D_{\nu} V_{\mu})^{\dagger} (D^{\mu} V^{\nu} - D^{\nu} V^{\mu}) + M_{V}^{2} V_{\mu}^{\dagger} V^{\mu} - \lambda_{2} (\phi^{\dagger} \phi) (V_{\mu}^{\dagger} V^{\mu})$$

$$- \lambda_{3} (\phi^{\dagger} V_{\mu}) (V^{\mu \dagger} \phi) - \frac{\lambda_{4}}{2} \left[(\phi^{\dagger} V_{\mu}) (\phi^{\dagger} V^{\mu}) + (V^{\mu \dagger} \phi) (V_{\mu}^{\dagger} \phi) \right]$$

$$- \alpha_{1} \left[\phi^{\dagger} (D_{\mu} V^{\mu}) + (D_{\mu} V^{\mu})^{\dagger} \phi \right] - \alpha_{2} (V_{\mu}^{\dagger} V^{\mu}) (V_{\nu}^{\dagger} V^{\nu}) - \alpha_{3} (V_{\mu}^{\dagger} V^{\nu}) (V_{\nu}^{\dagger} V^{\mu})$$

$$+ i g \kappa_{1} V_{\mu}^{\dagger} W^{\mu \nu} V_{\nu} + i \frac{g'}{2} \kappa_{2} V_{\mu}^{\dagger} B^{\mu \nu} V_{\nu}$$

where

where
$$D_\mu V_
u = \partial_\mu V_
u + i rac{g}{2} W_\mu^a \sigma^a V_
u + rac{i}{2} B_\mu V_
u$$

Not possible to couple V to standard fermions without introducing exotic vector-like fermions = > = > = > <

We considered a simplified DM model in which we introduce a new extra vector doublet V_{μ} transforming with the same quantum numbers as the Higgs field under the gauge symmetry group $SU(3)_c \times SU(2)_L \times U(1)_Y$

$$V_{\mu} = \begin{pmatrix} V_{\mu}^{+} \\ V_{\mu}^{o} \end{pmatrix} = \begin{pmatrix} V_{\mu}^{+} \\ \frac{V_{\mu}^{1} + iV_{\mu}^{2}}{\sqrt{2}} \end{pmatrix} \sim (1, 2, 1/2)$$

The most general Lagrangian respecting the SM gauge symmetry containing this new vector with operators up to dimension four is

$$\mathcal{L} = -\frac{1}{2} (D_{\mu} V_{\nu} - D_{\nu} V_{\mu})^{\dagger} (D^{\mu} V^{\nu} - D^{\nu} V^{\mu}) + M_{V}^{2} V_{\mu}^{\dagger} V^{\mu} - \lambda_{2} (\phi^{\dagger} \phi) (V_{\mu}^{\dagger} V^{\mu})$$

$$- \lambda_{3} (\phi^{\dagger} V_{\mu}) (V^{\mu \dagger} \phi) - \frac{\lambda_{4}}{2} \left[(\phi^{\dagger} V_{\mu}) (\phi^{\dagger} V^{\mu}) + (V^{\mu \dagger} \phi) (V_{\mu}^{\dagger} \phi) \right]$$

$$- \alpha_{1} \left[\phi^{\dagger} (D_{\mu} V^{\mu}) + (D_{\mu} V^{\mu})^{\dagger} \phi \right] - \alpha_{2} (V_{\mu}^{\dagger} V^{\mu}) (V_{\nu}^{\dagger} V^{\nu}) - \alpha_{3} (V_{\mu}^{\dagger} V^{\nu}) (V_{\nu}^{\dagger} V^{\mu})$$

$$+ i g \kappa_{1} V_{\mu}^{\dagger} W^{\mu \nu} V_{\nu} + i \frac{g'}{2} \kappa_{2} V_{\mu}^{\dagger} B^{\mu \nu} V_{\nu}$$

where

where
$$D_\mu V_
u = \partial_\mu V_
u + i rac{g}{2} W_\mu^a \sigma^a V_
u + rac{i}{2} B_\mu V_
u$$

For simplicity $\kappa_1 = \kappa_2 = 1$

We considered a simplified DM model in which we introduce a new extra vector doublet V_{μ} transforming with the same quantum numbers as the Higgs field under the gauge symmetry group $SU(3)_c \times SU(2)_L \times U(1)_Y$

$$V_{\mu} = \begin{pmatrix} V_{\mu}^{+} \\ V_{\mu}^{o} \end{pmatrix} = \begin{pmatrix} V_{\mu}^{+} \\ \frac{V_{\mu}^{1} + iV_{\mu}^{2}}{\sqrt{2}} \end{pmatrix} \sim (1, 2, 1/2)$$

The most general Lagrangian respecting the SM gauge symmetry containing this new vector with operators up to dimension four is

$$\mathcal{L} = -\frac{1}{2} (D_{\mu} V_{\nu} - D_{\nu} V_{\mu})^{\dagger} (D^{\mu} V^{\nu} - D^{\nu} V^{\mu}) + M_{V}^{2} V_{\mu}^{\dagger} V^{\mu} - \lambda_{2} (\phi^{\dagger} \phi) (V_{\mu}^{\dagger} V^{\mu})$$

$$- \lambda_{3} (\phi^{\dagger} V_{\mu}) (V^{\mu \dagger} \phi) - \frac{\lambda_{4}}{2} \left[(\phi^{\dagger} V_{\mu}) (\phi^{\dagger} V^{\mu}) + (V^{\mu \dagger} \phi) (V_{\mu}^{\dagger} \phi) \right]$$

$$- \alpha_{1} \left[\phi^{\dagger} (D_{\mu} V^{\mu}) + (D_{\mu} V^{\mu})^{\dagger} \phi \right] - \alpha_{2} (V_{\mu}^{\dagger} V^{\mu}) (V_{\nu}^{\dagger} V^{\nu}) - \alpha_{3} (V_{\mu}^{\dagger} V^{\nu}) (V_{\nu}^{\dagger} V^{\mu})$$

$$+ ig \kappa_{1} V_{\mu}^{\dagger} W^{\mu \nu} V_{\nu} + i \frac{g'}{2} \kappa_{2} V_{\mu}^{\dagger} B^{\mu \nu} V_{\nu}$$

where

where
$$D_\mu V_
u = \partial_\mu V_
u + i rac{g}{2} W_\mu^a \sigma^a V_
u + rac{i}{2} B_\mu V_
u$$

If $\alpha_1 = 0$ appears a Z_2 symmetry

In the limit when $\alpha_1=0$ the model acquires an additional Z_2 discrete symmetry allowing the stability of the lightest odd particle (LOP). The Lagrangian is reduce to

$$\mathcal{L} = -\frac{1}{2} (D_{\mu} V_{\nu} - D_{\nu} V_{\mu})^{\dagger} (D^{\mu} V^{\nu} - D^{\nu} V^{\mu}) + M_{V}^{2} V_{\mu}^{\dagger} V^{\mu}$$

$$- \lambda_{2} (\phi^{\dagger} \phi) (V_{\mu}^{\dagger} V^{\mu}) - \lambda_{3} (\phi^{\dagger} V_{\mu}) (V^{\mu \dagger} \phi)$$

$$- \frac{\lambda_{4}}{2} \left[(\phi^{\dagger} V_{\mu}) (\phi^{\dagger} V^{\mu}) + (V^{\mu \dagger} \phi) (V_{\mu}^{\dagger} \phi) \right]$$

$$- \alpha_{2} (V_{\mu}^{\dagger} V^{\mu}) (V_{\nu}^{\dagger} V^{\nu}) - \alpha_{3} (V_{\mu}^{\dagger} V^{\nu}) (V_{\nu}^{\dagger} V^{\mu})$$

$$+ ig V_{\mu}^{\dagger} W^{\mu \nu} V_{\nu} + i \frac{g'}{2} V_{\mu}^{\dagger} B^{\mu \nu} V_{\nu}$$

The model contain 6 free parameters: M_V , λ_2 , λ_3 , λ_4 , α_2 and α_3 . After EWSB, the tree level mass spectrum of the new sector is

$$\begin{split} M_{V^{\pm}}^2 &= & \frac{1}{2} \left[2 M_V^2 - v^2 \lambda_2 \right], \\ M_{V_1}^2 &= & \frac{1}{2} \left[2 M_V^2 - v^2 (\lambda_2 + \lambda_3 + \lambda_4) \right], \\ M_{V_2}^2 &= & \frac{1}{2} \left[2 M_V^2 - v^2 (\lambda_2 + \lambda_3 - \lambda_4) \right], \end{split}$$

In the limit when $\alpha_1=0$ the model acquires an additional Z_2 discrete symmetry allowing the stability of the lightest odd particle (LOP). The Lagrangian is reduce to

$$\mathcal{L} = -\frac{1}{2} (D_{\mu} V_{\nu} - D_{\nu} V_{\mu})^{\dagger} (D^{\mu} V^{\nu} - D^{\nu} V^{\mu}) + M_{V}^{2} V_{\mu}^{\dagger} V^{\mu}$$

$$- \lambda_{2} (\phi^{\dagger} \phi) (V_{\mu}^{\dagger} V^{\mu}) - \lambda_{3} (\phi^{\dagger} V_{\mu}) (V^{\mu \dagger} \phi)$$

$$- \frac{\lambda_{4}}{2} \left[(\phi^{\dagger} V_{\mu}) (\phi^{\dagger} V^{\mu}) + (V^{\mu \dagger} \phi) (V_{\mu}^{\dagger} \phi) \right]$$

$$- \alpha_{2} (V_{\mu}^{\dagger} V^{\mu}) (V_{\nu}^{\dagger} V^{\nu}) - \alpha_{3} (V_{\mu}^{\dagger} V^{\nu}) (V_{\nu}^{\dagger} V^{\mu})$$

$$+ ig V_{\mu}^{\dagger} W^{\mu \nu} V_{\nu} + i \frac{g'}{2} V_{\mu}^{\dagger} B^{\mu \nu} V_{\nu}$$

The model contain 6 free parameters: M_V , λ_2 , λ_3 , λ_4 , α_2 and α_3 . After EWSB, the tree level mass spectrum of the new sector is

$$M_{V^{\pm}}^{2} = \frac{1}{2} \left[2M_{V}^{2} - v^{2} \lambda_{2} \right],$$

$$M_{V_{1}}^{2} = \frac{1}{2} \left[2M_{V}^{2} - v^{2} (\lambda_{2} + \lambda_{3} + \lambda_{4}) \right],$$

$$M_{V_{2}}^{2} = \frac{1}{2} \left[2M_{V}^{2} - v^{2} (\lambda_{2} + \lambda_{3} - \lambda_{4}) \right],$$

$$M_{V_{2}}^{2} = \frac{1}{2} \left[2M_{V}^{2} - v^{2} (\lambda_{2} + \lambda_{3} - \lambda_{4}) \right],$$

For phenomenological proposes we will work on a different base of free parameters

$$M_{V_1}, M_{V_2}, M_{V^{\pm}}, \lambda_L, \alpha_2, \alpha_3$$
 (1)

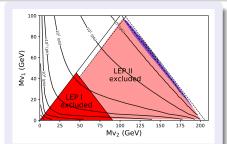
where $\lambda_L = \lambda_2 + \lambda_3 + \lambda_4$ play an important role controlling the interaction between the SM Higgs and DM.

It is convenient to write the quartic coupling and the mass parameter as a function of the new free parameters

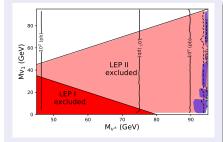
$$\lambda_{2} = \lambda_{L} + 2 \frac{\left(M_{V_{1}}^{2} - M_{V^{\pm}}^{2}\right)}{v^{2}}, \qquad \lambda_{3} = \frac{2M_{V^{\pm}}^{2} - M_{V_{1}}^{2} - M_{V_{2}}^{2}}{v^{2}},$$

$$\lambda_{4} = \frac{M_{V_{2}}^{2} - M_{V_{1}}^{2}}{v^{2}}, \qquad M_{V}^{2} = M_{V_{1}}^{2} + \frac{v^{2}\lambda_{L}}{2}. \qquad (2)$$

Constraints from LEP data



Allowed mass region for neutral vectors.



Allowed mass region for charged and neutral vectors.

Excluded by LEP I

$$M_{V_1} + M_{V^{\pm}} < M_{W^{\pm}}$$
 $M_{V_1} + M_{V_2} < M_Z$

$$M_{V_1} + M_{V_2} < M_2$$

$$M_{V_2} + M_{V^{\pm}} < M_{W^{\pm}}$$
 $2M_{V^{\pm}} < M_Z$

Excluded by LEP II

$$\rm M_{V_1} < 100~GeV$$
 & $\rm M_{V_2} < 200~GeV$ & $\rm M_{V_2} - M_{V_1} > 8~GeV$ & $\rm M_{V_1} + M_{V_2} < \sqrt{s}_{LEP}$ $\rm M_{V_2} \lesssim 93~GeV$

Constraints from LHC Higgs data

• Invisible Higgs Decay: The decay channel $H \to V_1 V_1$ is kinematically open when $M_{V_1} < M_H/2$ and it can affect the total width decay of H.

Excluded by Higgs data
$$Br(H \rightarrow \text{invisible}) > 24\%$$

• Diphoton signal strength $\mu^{\gamma\gamma}$:

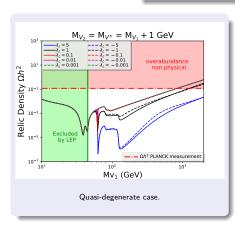
The $\mu^{\gamma\gamma}$ in the DVDM normalized to the SM value can be written as

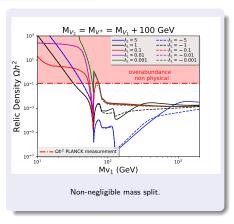
$$rac{\mathsf{Br}^{\mathsf{BSM}}(\mathsf{H} o \gamma \gamma)}{\mathsf{Br}^{\mathsf{SM}}(\mathsf{H} o \gamma \gamma)} = \mu^{\gamma \gamma} = 0.99 \pm 0.14$$

Relic Density Plots

Relic Density limit

$$\Omega_{\rm Y} h^2 = 0.1184 \pm 0.0012$$



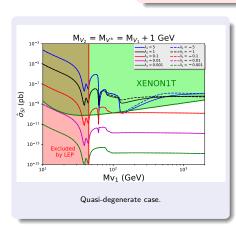


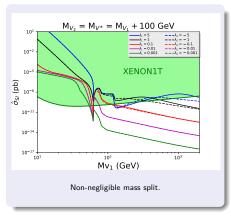
Two scenarios of large and small ΔM qualitatively covers the whole parameter space.

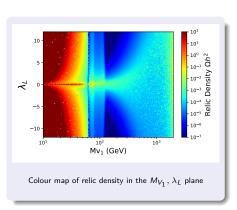
Direct Detection

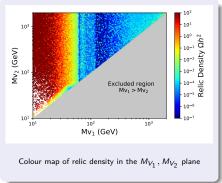
Rescaled SI cross section

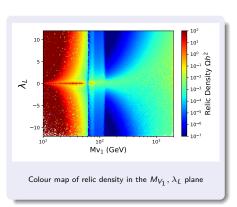
$$\hat{\sigma}_{\mathsf{SI}} = rac{\Omega_{\mathit{DM}}}{\Omega_{\mathsf{Planck}}} imes \sigma_{\mathsf{SI}} (\mathit{V}_1 \mathit{p}
ightarrow \mathit{V}_1 \mathit{p})$$

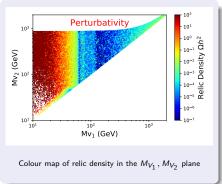


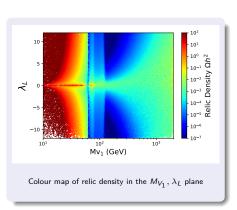


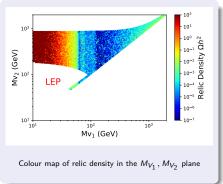


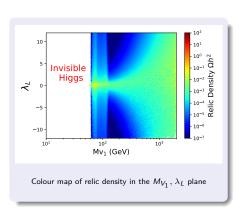


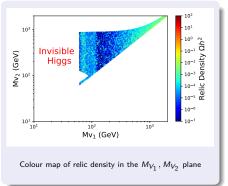


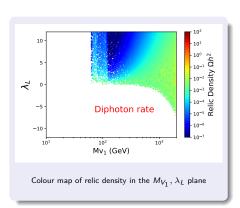


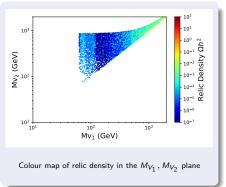


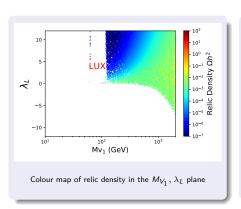


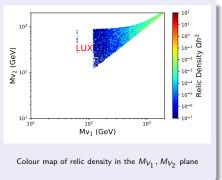


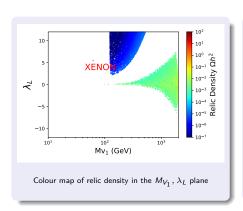


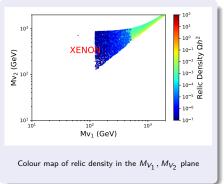




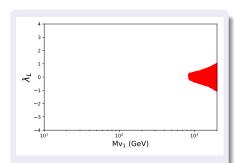




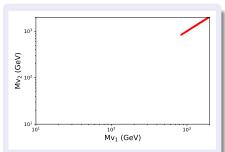




Vector Dark Matter as the only source



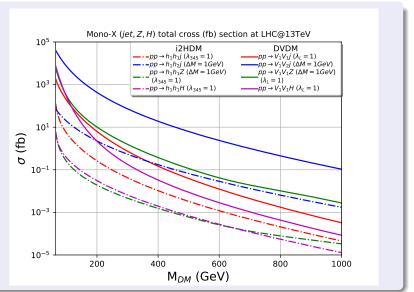
Scatter plot of the Relic Density in the plane M_{V_1} , λ_L after all constraints.



Scatter plot of the Relic Density in the plane ${\cal M}_{V_1}\,,\,{\cal M}_{V_2}$ after all constraints.

Satisfy PLANCK limits $M_{V_1} > 840 \text{ GeV}$

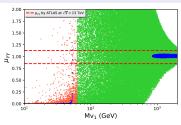
Production at LHC



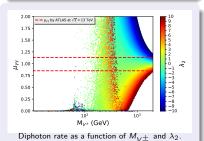
Conclusions

- We studied a simple extension to the SM including a new vector doublet.
- The model acquires a Z_2 symmetry when the only nonstandard dimension 3 operator is eliminated, allowing the neutral V_1 component to be a good Dark Matter candidate.
- The model is consistent with experimental constraints and it is capable to fulfill the DM budget with masses over 840 GeV
- The model is strongly challenged by experimental data and by unitarity constraints.

$H \rightarrow \gamma \gamma$ constraints from LHC data



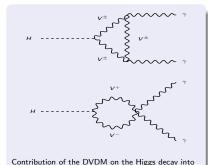
Diphoton rate vs DM mass M_{V_1} .



The $\mu^{\gamma\gamma}$ in the DVDM normalized to the SM value can be written as

Diphoton signal limit

$$\frac{\textit{Br}^{\textit{BSM}}(\textit{H} \rightarrow \gamma \gamma)}{\textit{Br}^{\textit{SM}}(\textit{H} \rightarrow \gamma \gamma)} = \mu^{\gamma \gamma} = 0.99 \pm 0.14$$

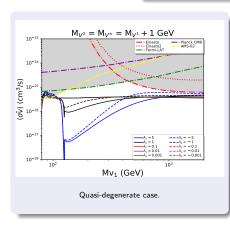


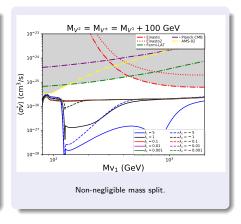
two photons.

Indirect Detection

Rescaled average annihilation σ

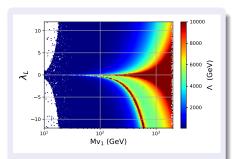
$$\langle \hat{\sigma v}
angle = rac{\Omega_{DM}}{\Omega_{\mathsf{Planck}}} imes \langle \sigma v
angle$$



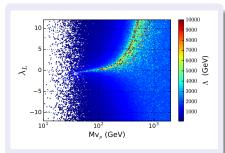


Perturbative Unitarity

The main theoretical challenge faced by our construction is the eventual violation of perturbative unitarity introduced by the new massive vectors. We studied the process $V^1h \to V^1h$ and $ZV^\pm \to ZV^\pm$



Maximum energy scale Λ until the process $V^1h \to V^1h$ start to violate perturbative unitarity.



Maximum energy scale Λ until the process $ZV^{\pm} \to ZV^{\pm}$ start to violate perturbative unitarity.