Physics Beyond SM With Kaons From NA62

Jacopo Pinzino CERN PASCOS2019 02/07/2019

The NA62 Experiment

- NA62: High precision fixed-target Kaon experiment at CERN SPS
- Main goal: measurement of BR($K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$)
- Broader physics program: LFV / LNV in K⁺ decays, hidden sector particles searches.

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

AD Antiproton Decelerator CTF-3 Clic Test Facility CNCS Cem Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice Ler Low Energy Ion Ring LINAC LINear ACcelerator n-TDF Neutrons Time Of Hight

NA62 Timeline

- 2008: NA62 Approval
- 2014: NA62 Pilot Run (partial layout)
- 2015: Commissioning run
- Full detector installation completed in September 2016
- 2016 : First $\pi \nu \nu$ dataset in 2016 (This talk)
- Continuous data-taking until the end of 2018

~ 200 participants from: Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna, GMU-Fairfax, Ferrara, Firenze, Frascati, Glasgow, Lancaster, Liverpool, Louvain, Mainz, Moscow, Napoli, Perugia, Pisa, Prague, Protvino, Roma I, Roma II, San Luis Potosi, Torino, TRIUMF, Vancouver UBC

The $K \to \pi \upsilon \overline{\upsilon}$ decay

- High sensitivity to New Physics
- FCNC process forbidden at tree level
- Highly CKM suppressed (BR ~ $|V_{ts}xV_{td}|^2$)

- Very clean theoretically: Short distance contribution
- hadronic matrix element extracted from precisely measured BR(K⁺ $\rightarrow \pi^0 e^+ v$)
- SM predictions: $BR(K^+ \to \pi^+ \upsilon \overline{\upsilon}) = (8.4 \pm 1.0) \times 10^{-11}$ $BR(K_L \to \pi^0 \upsilon \overline{\upsilon}) = (3.4 \pm 0.6) \times 10^{-11}$
- Experimental Result:

BR(K⁺ → $\pi^+ \upsilon \overline{\upsilon}$) = (17.3^{+11.5}_{-10.5}) × 10⁻¹¹ BR(K_L → $\pi^0 \upsilon \overline{\upsilon}$) < 2.6 × 10⁻⁸ (90% C.L)

[Buras et al. JHEP 1511 (2015) 33]

[Phys. Rev. D 77, 052003 (2008), Phys. Rev. D 79, 092004 (2009)] [Phys. Rev. D 81, 072004 (2010)]

$K \to \pi \upsilon \overline{\upsilon}$ and New Physics

Measurement of charged ($K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$) and neutral ($K_L \rightarrow \pi^0 \upsilon \overline{\upsilon}$) modes can discriminate among different NP scenarios

- Models with CKM-like flavor structure:
 Models with MFV
- Models with new flavour-violating interactions in which either LH or RH currents dominate:
 - Z/Z' models with pure LH/RH couplings
 - Little Higgs with *T* parity
- Models without above constraints:
 - Randall-Sundrum

Analysis Strategy

- New Decay in flight technique
- Signal: 1 beam track, 1 charged track, nothing else
- Background: K⁺ decay modes; beam activity
- Kinematics: $m_{miss}^2 = (P_{K^+} P_{\pi^+})^2$

• Signal and background control regions are kept

blind throughout the analysis

P_K

Signal Selection

Kinematic suppression

Single Event Sensitivity (SES)

So	ource	δSES(10 ⁻¹⁰)		
Ra	indom Veto	±0.17		
N _k	X	±0.05		
Tr	igger efficiency	±0.04		
De	efinition of $\pi^+\pi^0$ region	±0.10		
M	omentum spectrum	±0.01		
Ex	tra activity	±0.09	2000	
Sir	mulation of π^+ interactions	±0.02	0	
G	FK Pileup simulation	±0.02	Q	
То	tal	±0.24		
			1	
$ES = (3.15 \pm 0.01_{\text{stat}} \pm 0.24_{\text{syst}}) \cdot 10^{-10}$				

Background summary

Process	Expected events in R1+R2	
$\mathrm{K}^{+} \rightarrow \pi^{+} \upsilon \bar{\upsilon} \ (\mathrm{SM})$	$0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{ext}$	9
Total Background	$0.15 \pm 0.09_{stat} \pm 0.01_{syst}$	
$K^+ \rightarrow \pi^+ \pi^0(\gamma) \text{ IB}$	$0.064 \pm 0.007_{stat} \pm 0.006_{syst}$	
$K^+ \rightarrow \mu^+ \nu_{\mu}(\gamma) \text{ IB}$	$0.020 \pm 0.003_{stat} \pm 0.003_{syst}$	\mathbf{S}
$K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$	$0.018^{+0.024}_{-0.017} _{\text{stat}} \pm 0.009_{\text{syst}}$	d
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	$0.002 \pm 0.001_{stat} \pm 0.002_{syst}$	
Upstream Background	$0.050^{+0.090}_{-0.030} _{\text{stat}}$	V

Result

JACOPO PINZINO

Result

JACOPO PINZINO

Result

• 1 observed Events

• SES =
$$(3.15 \pm 0.01_{\text{stat}} \pm 0.24_{\text{syst}}) \cdot 10^{-10}$$

• Expected Background = $0.15 \pm 0.09_{\text{stat}} \pm 0.01_{\text{syst}}$

$$BR(K^{+} \to \pi^{+} \upsilon \overline{\upsilon}) < 14 \cdot 10^{-10} @ 95\% CL$$

$$BR(K^{+} \to \pi^{+} \upsilon \overline{\upsilon}) < 11 \cdot 10^{-10} @ 90\% CL$$

$$BR(K^{+} \to \pi^{+} \upsilon \overline{\upsilon}) = 2.8^{+4.4}_{-2.3} \cdot 10^{-10} @ 68\% CL$$

For comparison:

- SM prediction: BR(K⁺ $\rightarrow \pi^+ \upsilon \overline{\upsilon})_{SM} = (0.84 \pm 0.10) \times 10^{-10}$
- BNL E949/E787 (Kaon decays at rest): BR(K⁺ $\rightarrow \pi^+ \upsilon \overline{\upsilon})_{exp} = 1.73^{+1.15}_{-1.05} \cdot 10^{-10}$

2017 Data: Selection and SES

- 2016-like selection
- Comparable to the 2016 analysis performances
 - Better treatment of pileup in IRC and SAC
 - 40% lower π⁰ rejection inefficiency compared to 2016: $(1.4 \pm 0.1)x 10^{-8}$
 - Slightly improved usage of RICH variables

NA62 Preliminary			
Ν _κ	$(13 \pm 1) \times 10^{11}$		
SES	$(0.34 \pm 0.04) \times 10^{-10}$		
Expected SM $K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$	2.5 ± 0.4		

upstream background

2017 Data: backgrounds

- 2017 data allows detailed comparison between data and background models
- Good agreement between m_{miss} model and data confirms validity of estimated background from kaon decays

Process	Expected events in signal regions
$K^+ \to \pi^+ \pi^0(\gamma)$ IB	$0.35\pm0.02_{stat}\pm0.03_{syst}$
$K^+ \to \mu^+ \nu(\gamma)$ IB	$0.16\pm0.01_{stat}\pm0.05_{syst}$
$K^+ \to \pi^+\pi^- e^+ \nu$	$0.22\pm0.08_{stat}$
$K^+ \to \pi^+ \pi^+ \pi^-$	$0.015 \pm 0.008_{stat} \pm 0.015_{syst}$
$K^+ \to \pi^+ \gamma \gamma$	$0.005\pm0.005_{syst}$
$K^+ \to l^+ \pi^0 \nu_l$	$0.012\pm0.012_{syst}$
Upstream Background	Analysis on–going

Prospects

- 2017 data analysis is on going:
 - SES is 10 times better than for 2016
 - Upstream background estimation on going
 - Background rejection and reconstruction efficiency study on going
 - Expected about 2.5 events
- 2018 to be analysed

NA62: Broader physics program

- Rare kaon decays
- LNV/LFV in kaon decays [this talk]
- Exotic searches [Monica Pepe talk]:
 - \circ HNL searches
 - Dark Photon
 - \circ Axion-like particle

Lepton Number Violation

Violation of LN and LF conservation laws predicted in BSM models (for example via Majorana neutrinos)

Previous experimental results:

- BR(K⁺ $\rightarrow \pi^- e^+ e^+$) < 6.4 × 10⁻¹⁰ @ 90% CL [BNL E865 : PRL 85 2877 (2000)]
- BR(K⁺ $\rightarrow \pi^{-}\mu^{+}\mu^{+}) < 8.6 \times 10^{-11}$ @ 90% CL [CERN NA48/2 : PL B769 67 (2017)]

LNV searches in NA62:

- ~3 months of data taking in 2017
- Blind analysis
- Normalization to SM decays (K⁺→π⁺l⁺l⁻)
- Acceptance:
 - \circ 5% for K⁺ $\rightarrow \pi^- e^+ e^+$
 - \circ 10% for K⁺→π⁻μ⁺μ⁺
- Main background is due to pion mis-identification and decays in flight

$K^+ \rightarrow \pi^- \mu^+ \mu^+$

- Expected background in the blinded region: 0.91 ± 0.41
- One candidate observed in the signal region
- BR(K⁺ $\rightarrow \pi^{-}\mu^{+}\mu^{+}) < 4.2 \cdot 10^{-11} @ 90\% CL$

$K^+ \rightarrow \pi^- e^+ e^+$

- Expected background in the blinded region: 0.16 ± 0.03
- No candidate observed in the signal region
- BR(K⁺ $\rightarrow \pi^- e^+ e^+$) < 2.2 · 10⁻¹⁰ @ 90% CL

Conclusion

- $K^+ \rightarrow \pi^+ \upsilon \overline{\upsilon}$: analysis of 2016 data finished and published \circ The novel decay-in-flight technique is established [Phys. Lett. B 791 (2019) 156]
- K⁺ → π⁺υῡ: analysis of 2017 data on going
 Results expected in 2019
- LNV $K^+ \rightarrow \pi^- l^+ l^+$: new result from the analysis of 3 months of 2017 data taking [arXiv:1905.07770 submitted to Phys. Lett.
 - about 3 times more data to analyse

backgrounds : $K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e (K_{e4})$

Comparison with B physics can provide description of NP flavour dynamics

NA62 "Luminosity"

2016 Run $13 \cdot 10^{11}$ ppp on target (40% normal) $\sim 1 \cdot 10^{11} \text{ K}^+$ decays useful for $\pi^+ \upsilon \overline{\upsilon}$

2017 Run

5

Kinematic Resolution

backgrounds : $K^+ \rightarrow \pi^+ \pi^0(\gamma)$

٠

•

JACOPO PINZINO

backgrounds : $K^+ \rightarrow \mu^+ \nu_{\mu}(\gamma)$

۲

•

Upstream background

backgrounds : $K^+ \rightarrow \pi^+ \pi^+ \pi^-$

 $N_{\pi\pi\pi}^{exp} = N(\pi^{+}\pi^{+}\pi^{-}) \cdot f^{kin}(R2)$

- N(π⁺π⁺π⁻): Event in π⁺π⁺π⁻ region after π⁺νν selection
- *f*_{kin} measured on a π⁺π⁺π⁻ control sample selected tagging the π⁺π⁻ pair
- Kinematic rejection factor corrected for biases induced by the control sample selection using MC
- $f_{kin}(R2) \le 10^{-4}$

$$N_{\pi^{+}\pi^{+}\pi^{-}}^{bg} = 0.002 \pm 0.001_{\text{stat}} \pm 0.002_{\text{syst}}$$

Result: RICH ring for the observed event

Run 6646, Burst 953, Event 543854, Track 1

NA62 Physics beside $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

- Standard kaon physics:
 - ➤ ChPT studies: K⁺ → π⁺γγ, K⁺ → π⁺π⁰e⁺e⁻, K⁺ → π⁺ℓ⁺ℓ⁻
- Searches for lepton-flavor or -number violating decays

 $\succ \ \textit{K}^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +} \mu^{\pm} e^{\mp}, \, \textit{K}^{\scriptscriptstyle +} \rightarrow \pi^{-} \mu^{\scriptscriptstyle +} e^{\scriptscriptstyle +}, \, \textit{K}^{\scriptscriptstyle +} \rightarrow \pi^{-} \ell^{\scriptscriptstyle +} \ell^{\scriptscriptstyle +}$

- Heavy neutral lepton production searches
 - \succ K⁺ \rightarrow I⁺v_h (analysis with 2015 data published in Phys.Lett. B778 (2018) 137-145)
 - \succ v_h from upstream K, D decays with $v_h \rightarrow \pi \ell$
- Searches for long-lived dark sector particles
 - > Dark photon γ' produced in π/ρ decays in target, with $\gamma' \rightarrow \ell^+ \ell^-$
 - > Axion-like particle A^0 produced in target/beam dump, with $A^0 \rightarrow \gamma \gamma$
- π^0 decays rare and forbidden/LFV, dark photon production:
 - $\blacktriangleright \pi^{_0} \rightarrow \text{invisible}, \pi^{_0} \rightarrow 3/4\gamma, \pi^{_0} \rightarrow ee, eee, \pi^{_0} \rightarrow \mu e, \pi^{_0} \rightarrow \gamma' \gamma$