A new sensitivity goal for neutrino-less double beta decay experiments

Srubabati Goswami

Physical Research Laboratory, Ahmedabad Leverhulme Trust Visiting Professor, Imperial College, London

PASCOS 2019 XXV International Symposium

LEVERHULME TRUST_____

Neutrino-less double beta decay

$$(A,Z) \rightarrow (A,Z+2) + 2e^- (0\nu\beta\beta)$$

Rare Process Violates Lepton Number by 2 Units

Standard Picture for $0\nu\beta\beta$ * $0\nu\beta\beta$ mediated by light neutrinos

9 The half-life for $0\nu\beta\beta$,

$$\frac{1}{T_{1/2}^{0\nu}} = G |\mathcal{M}_{\nu}|^2 \left| \frac{m_{ee}^{\nu}}{m_e} \right|^2 ,$$

- $G \rightarrow \text{contains the phase space factors (calculable)}$
- *M_ν* is the nuclear matrix element (important and complicated.)

 $|m_{\nu}^{ee}| = |U_{ei}^2 m_i| \rightarrow \text{the effective mass, (interesting)}$

The effective mass

$$|m_{\nu}^{ee}| = |m_1 U_{e1}^2 + m_2 U_{e2}^2 e^{2i\alpha_1} + m_3 U_{e3}^2 e^{2i\alpha_2}|$$

• ν Mass Spectrum • Absolute ν Mass Scale • CP phases

NH: $m_1 << m_2 << m_3$

IH: $m_3 \ll m_1 \approx m_2$

QD: $m_1 \approx m_2 \approx m_3$

Experimental Results

Results from experiments using ¹³⁶Xe

> $T_{1/2}^{0\nu}$ >1.07×10²⁶ years at 90% C.L. (KamLAND-ZEN) A. Gando et al. Phys. Rev. Lett.117, no. 8, 082503 (2016)

 Results from GERDA using ⁷⁶Ge T_{1/2}^{0ν} > 5.2×10²⁵ years at 90% C.L M. Agostini et al., Nature 54, 47 (2017)

 Disfavours the positive claim by Klapdor-Kleingotherus et al. T_{1/2}^{0ν} = 2.23^{+0.44}_{-0.31}×10²⁵ years at 68% C.L.

Klapdor-Kleingrothaus, Krivosheina, Mod. Phys. Lett. A21, 1547 (2006)

Bounds on $|m_{ee}^{\nu}| = m_{\beta\beta}$

* The lower bound on half-life can be translated to an upper bound on $m_{\beta\beta}$

NME	lm^{ν}	lm^{ν}			
Method	$\mathcal{M}^{0\nu}$	$\mathcal{M}^{0\nu}$	¹¹ ee	111ee	
	(^{76}Ge)	$(^{136}$ Xe $)$	(^{76}Ge)	(^{136}Xe)	
EDF(U)[52]	4.6	4.2	0.20	0.06	
ISM(U) [53]	2.81	2.19	0.33	0.12	
IBM-2 [54]	5.42	3.33	0.17	0.08	
pm-QRPA(U)[55]	5.18	3.16	0.18	0.08	
SRQRPA-B[56]	5.82	3.36	0.16	0.08	
SRQRPA-B[56]	4.75	2.29	0.20	0.11	
QRPA-B [57]	5.57	2.46	0.17	0.11	
QRPA-A[57]	5.16	2.18	0.18	0.12	
SkM-HFB-QRPA [58]	5.09	1.89	0.18	0.14	

Awasthi, Dasgupta, Mitra, Phys. Rev. D. 2016

The variation in the upper bound is due to different NME

Current limit and future reach

- * Width in $m_{\beta\beta}$ due to oscillation parameters and Majorana phases
- * Next generation experiments can probe IH
- * New physics predictions in the desert region ?

Non-Standard Interactions

8

• Standard NC interaction:

Η

 $\nu_{\alpha} + f \rightarrow \nu_{\alpha} + f$

Non-standard NC interaction

$$\begin{split} \nu_{\alpha} + f \to \nu_{\beta} + f \\ \mathcal{L} &= -G^{\alpha\beta} \epsilon^{f}_{\alpha\beta} \bar{\nu}_{\alpha} \gamma^{\mu} \nu_{\beta} \bar{f} \gamma_{\mu} f \\ \epsilon_{\alpha\beta} &= \sum_{f=e,u,d} \frac{N_{f}}{N_{e}} \epsilon^{f}_{\alpha\beta} \end{split}$$

$$H = \frac{1}{2E} \left[U \operatorname{diag}(0, \Delta m_{21}^2, \Delta m_{31}^2) U^{\dagger} + V \right] ,$$

 $H \rightarrow -H^*$ under

 $V \Rightarrow$ matter potential in presence of NSI,

$$V = A \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} e^{i\phi_{e\mu}} & \epsilon_{e\tau} e^{i\phi_{e\tau}} \\ \epsilon_{e\mu} e^{-i\phi_{e\mu}} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} e^{i\phi_{\mu\tau}} \\ \epsilon_{e\tau} e^{-i\phi_{e\tau}} & \epsilon_{\mu\tau} e^{-i\phi_{\mu\tau}} & \epsilon_{\tau\tau} \end{pmatrix}$$

lere, $A \equiv 2\sqrt{2}G_F N_e E$ and $\epsilon_{\alpha\beta} e^{i\phi_{\alpha\beta}} \equiv \sum_{f,C} \epsilon_{\alpha\beta}^{fC} \frac{N_f}{N_e}$

$$egin{aligned} & heta_{12}
ightarrow \pi/2 - heta_{12}, \ \delta
ightarrow \pi - \delta_{12} \ & \Delta m_{31}^2
ightarrow -\Delta m_{31}^2 + \Delta m_{21}^2 \ & V
ightarrow -S.V.S \ & S = Diag(1, -1, -1) \end{aligned}$$

Coloma, Schwetz, 1604.05772 P. Bakhti, Y Farzan 1403.0744

The Dark-LMA Solution(NSI)

Miranda, M. A. Tortola, and J. W. F. Valle, J. HighEnergy Phys. 10 (2006) 008.

Do Scattering Experiments disfavour DLMA?

Scattering experiments like CHARM, NuTeV, COHERENT can measure the NSI parameters

Coloma, Gonzalez-Garcia, Maltoni, Schwetz Phys. Rev. D(2017). Denton, Farzan, Shoemaker, J. HighEnergy Phys (2018).

Current Status of the DLMA solution

* Constraints including COHERENT (cyan lines)

Esteban, Gonzalez-Garcia, Maltoni, Martinez-Soler, Salvado, J. High Energy Phys. 08 (2018)

DLMA Solution and $0\nu\beta\beta$

Vishnudath, Choubey, Goswami, Phys, Rev. D. (2019)

Probing the DLMA region in $0\nu\beta\beta$

Agostini, Benato, Detwiler, Phys. Rev. D (2017)

$$T_{1/2} = \ln 2 \frac{N_A \epsilon}{m_a S_{3\sigma}(B)}.$$

Isotope	NME (M_{ν})	$G(10^{-15} \mathrm{year}^{-1})$	$T_{1/2}$ range (years)
^{136}Xe	1.6 - 4.8	14.58	$5.3\times 10^{27} - 1.7\times 10^{29}$
^{76}Ge	2.8 - 6.1	2.363	$2.0\times 10^{28} - 3.4\times 10^{29}$
^{130}Te	1.4 - 6.4	14.22	$4.9\times 10^{28} - 2.2\times 10^{29}$

 $1 - CDF_{\text{Poisson}}(C_{3\sigma}|S_{3\sigma} + B) = 50\%.$

Less exposure needed for DLMA

Vishnudath, Choubey, Goswmi, Phys, Rev. D. (2019)

Comparison with sterile neutrinos

- * Predictions in the desert zone
- * DLMA range narrower

Already in the disallowed part Cancellation regions

Deepthi, Goswami, Poddar, Vishnudath (in progress)

Conclusions

- * In presence of NSI, the solar neutrino problem admits a new solution with $\sin^2 \theta_{12} \sim 0.7$ (Dark-LMA solution)
- * We studied the implication of this for neutrino-less double beta decay
- * ForIH, predictions remain the same
- * The NH predictions are higher for smaller masses
- * This is in the desert region between NH and IH (0.004 -0.007 eV)
- * Future experiments can explore this region, if no signal is found for IH
- * Neutrino-less double beta decay experiments can test the DLMA region in this parameter region.

Past, present and future experiments

Experiment	Isotope	Techinique	Total mass [kg]	Exposure [kg yr]	FWHM @ $Q_{\rho\rho}$ [keV]	Background [counts/keV/kg/yr]	$S^{0\nu}_{(50\% \text{ c. L.})}$ [10 ²⁵ yr]
Past	-						
Cuoricino, [177]	130Te	bolometers	40.7 (TeO ₂)	19.75	5.8 ± 2.1	0.153 ± 0.006	0.24
CUORE-0, [178]	¹²⁰ Te	bolometers	39 (TeO ₂)	9.8	5.1 ± 0.3	0.058 ± 0.006	0.29
Heidelberg-Moscow, [179]	⁷⁶ Ge	Ge diodes	11 (enrGe)	35.5	4.23 ± 0.14	0.06 ± 0.01	1.9
IGEX, [180, 181]	⁷⁶ Ge	Ge diodes	8.1 (enrGe)	8.9	~ 4	≤ 0.06	1.57
GERDA-I, [165, 182]	⁷⁶ Ge	Ge diodes	17.7 (enrGe)	21.64	3.2 ± 0.2	~ 0.01	2.1
NEMO-3, [183]	¹⁰⁰ Mo	tracker + calorimeter	6.9 (¹⁰⁰ Mo)	34.7	350	0.013	0.11
Present	_						
EXO-200, [184]	¹³⁶ Xe	LXe TPC	175 ("""Xe)	100	89 ± 3	$(1.7 \pm 0.2) \cdot 10^{-3}$	1.1
KamLAND-Zen, [185, 186]	¹³⁶ Xe	loaded liquid scintillator	348 (unrXe)	89.5	244 ± 11	~ 0.01	1.9
Future							
CUORE, [187]	130 Te	bolometers	741 (TeO.)	1030	5	0.01	9.5
GERDA-II. [172]	⁷⁶ Ge	Ge diodes	37.8 (""Ge)	100	3	0.001	15
LUCIFER, [188]	⁸² Se	bolometers	17 (Zn ⁸² Se)	18	10	0.001	1.8
MAJORANA D., [189]	⁷⁶ Ge	Ge diodes	44.8 (enr/natGe)	100 ^a	4	0.003	12
NEXT, [190, 191]	¹³⁶ Xe	Xe TPC	100 (enrXe)	300	12.3 - 17.2	$5 \cdot 10^{-4}$	5
AMoRE, [192]	100Mo	bolometers	200 (Ca ^{sar} MoO ₄)	295	9	1 - 10-4	5
nEXO, [193]	¹³⁶ Xe	LXe TPC	4780 (enrXe)	12150 ^b	58	$1.7 \cdot 10^{-5 b}$	66
PandaX-III, [194]	¹³⁶ Xe	Xe TPC	1000 (""Xe)	3000 °	12 - 76	0.001	11 ^c
SNO+, [195]	¹³⁰ Te	loaded liquid scintillator	2340 (^{nas} Te)	3980	270	$2 \cdot 10^{-4}$	9
SuperNEMO, [196, 197]	⁸² Se	tracker + calorimeter	$100 (^{82}Se)$	500	120	0.01	10

^aour assumption (corresponding sensitivity from Fig. 14 of Ref. [189]).

bwe assume 3 tons fiducial volume

^Cour assumption by rescaling NEXT.

Dell'Oro, Marcocci, Viel, Vissani, 2016