Relaxation of hierarchy

 in higher dimensional Starobinsky modelYu Asai（浅井優）

Dept．of Physics，Waseda Univ．，Japan

Inflation and Starobinsky model
 $$
N_{e}=50 \sim 60
$$

$>$ Inflation[1]

*Solve initial problems of standard BB cosmology
*Predict observables of CMB
*Can be caused by scalar field

[1]A.D.Linde, Phys.Lett.B (1982)
A.Albrecht and P.J.Steinhardt, Phys.Rev.Lett (1982)
[2]A.A.Starobinsky, Phys.Lett.B (1980)
[3]Planck Collaboration, arXiv:1807.06211

Inflation and Starobinsky model
 $$
N_{e}=50 \sim 60
$$

$>$ Inflation[1]

*Solve initial problems of standard BB cosmology
*Predict observables of CMB
*Can be caused by scalar field
$>$ Starobinsky model[2]

$$
\frac{M_{P}^{2}}{2} \int d^{4} x \sqrt{-g}\left(R+\frac{1}{2 M^{2}} R^{2}\right)
$$

\Longleftrightarrow Einstein gravity + Scalar field

[1]A.D.Linde, Phys.Lett.B (1982)
A.Albrecht and P.J.Steinhardt, Phys.Rev.Lett (1982)
[2]A.A.Starobinsky, Phys.Lett.B (1980)
[3]Planck Collaboration, arXiv:1807.06211

Inflation and Starobinsky model
 $$
N_{e}=50 \sim 60
$$

$>$ Inflation[1]

*Solve initial problems of standard BB cosmology
*Predict observables of CMB
*Can be caused by scalar field
$>$ Starobinsky model[2]

$$
\frac{M_{P}^{2}}{2} \int d^{4} x \sqrt{-g}\left(R+\frac{1}{2 M^{2}} R^{2}\right)
$$

\leadsto Einstein gravity + Scalar field

$$
\left\{\begin{aligned}
n_{s}-1 & =-\frac{2}{N_{e}}+\mathcal{O}\left(N_{e}^{-2}\right) \\
r & =\frac{12}{N_{e}}+\mathcal{O}\left(N_{e}^{-3}\right)
\end{aligned}\right.
$$

[1]A.D.Linde, Phys.Lett.B (1982)
A.Albrecht and P.J.Steinhardt, Phys.Rev.Lett (1982)
[2]A.A.Starobinsky, Phys_Lett.B (1980)
[3]Planck Collaboration, arXiv:1807.06211

The origin of Starobinsky model

$>$ Starobinsky model

$$
\frac{M_{P}^{2}}{2} \int d^{4} x \sqrt{-g}\left(R+\frac{1}{2 M^{2}} R^{2}\right)
$$

[4] M.C.Bento and O.Bertolami, Phys. Lett. B (1996) and References within
[5] D. Lovelock, J.Math.Phys. (1971)

The origin of Starobinsky model

$>$ String/M theory effective action [4]

$$
\frac{M_{(D)}^{D-2}}{2} \int d^{D} x \sqrt{-g^{(D)}}
$$

$$
\times\left(R^{(D)}+\sum_{m=2}^{\infty} \mathcal{L}^{(m)}\left(R_{\mu \nu \rho \sigma}^{(D)}, g_{\mu \nu}^{(D)}\right)\right)
$$

$$
\gamma^{\wedge}
$$

m -th order of curvature
(not Lovelock[5] in general)
$>$ Starobinsky model

$$
\frac{M_{P}^{2}}{2} \int d^{4} x \sqrt{-g}\left(R+\frac{1}{2 M^{2}} R^{2}\right)
$$

[4] M.C.Bento and O.Bertolami, Phys. Lett. B (1996) and References within
[5] D. Lovelock, J.Math.Phys. (1971)

The origin of Starobinsky model

$>$ String/M theory effective action [4]

$$
\frac{M_{(D)}^{D-2}}{2} \int d^{D} x \sqrt{-g^{(D)}}
$$

$$
\times\left(R^{(D)}+\sum_{m=2}^{\infty} \mathcal{L}^{(m)}\left(R_{\mu \nu \rho \sigma}^{(D)}, g_{\mu \nu}^{(D)}\right)\right)
$$

$$
\gamma
$$

m -th order of curvature
(not Lovelock[5] in general)
$>$ Starobinsky model

$$
\frac{M_{P}^{2}}{2} \int d^{4} x \sqrt{-g}\left(R+\frac{1}{2 M^{2}} R^{2}\right)
$$

[4] M.C.Bento and O.Bertolami, Phys. Lett. B (1996) and References within
[5] D. Lovelock, J.Math.Phys. (1971)

The origin of Starobinsky model

$>$ String/M theory effective action [4]

$$
\frac{M_{(D)}^{D-2}}{2} \int d^{D} x \sqrt{-g^{(D)}}
$$

$$
\times\left(R^{(D)}+\sum_{m=2}^{\infty} \mathcal{L}^{(m)}\left(R_{\mu \nu \rho \sigma}^{(D)}, g_{\mu \nu}^{(D)}\right)\right)
$$

$$
9^{\prime}
$$

m-th order of curvature
(not Lovelock[5] in general)
$>$ Starobinsky model

$$
\frac{M_{P}^{2}}{2} \int d^{4} x \sqrt{-g}\left(R+\frac{1}{2 M^{2}} R^{2}\right)
$$

[4] M.C.Bento and O.Bertolami, Phys. Lett. B (1996) and References within
[5] D. Lovelock, J.Math.Phys. (1971)
\rightarrow Toy model we will discuss here

$$
\frac{M_{(D)}^{D-2}}{2} \int d^{D} x \sqrt{-g^{(D)}}\left(R^{(D)}+\sum_{m=2}^{\infty} \frac{\lambda_{m}}{m M^{2 m-2}}\left(R^{(D)}\right)^{m}\right)
$$

Starobinsky model in higher dimensions[6]

$$
\frac{M_{(D)}^{D-2}}{2} \int d^{D} x \sqrt{-g^{(D)}}\left(R^{(D)}+\frac{1}{n M^{2 n-2}}\left(R^{(D)}\right)^{n}\right)
$$

Starobinsky model in higher dimensions[6]

$$
\frac{M_{(D)}^{D-2}}{2} \int d^{D} x \sqrt{-g^{(D)}}\left(R^{(D)}+\frac{1}{n M \sum^{2 n-2}}\left(R^{(D)}\right)^{n}\right)
$$

Legendre-Weyl translation

Einstein Gravity + scalar field in D dimensions

Compactify extra dimensions with a form flux

Einstein Gravity + scalar field in 4 dimensions

Starobinsky model in higher dimensions[6]

Legendre-Weyl translation

Einstein Gravity + scalar field in D dimensions

Compactify extra dimensions with a form flux

Einstein Gravity + scalar field in 4 dimensions

$$
\left\{\begin{aligned}
n_{s}-1 & =-\frac{2}{N_{e}}+\mathcal{O}\left(N_{e}^{-2}\right) \\
r & =\frac{4(2 n-1)}{n-1} N_{e}^{-1}+\mathcal{O}\left(N_{e}^{-3}\right)
\end{aligned}\right.
$$

What we will do

$$
\frac{M_{(D)}^{D-2}}{2} \int d^{D} x \sqrt{-g^{(D)}}\left(R^{(D)}+F^{(p o l y)}\left(R^{(D)}\right)\right)
$$

Legendre-Weyl translation

Einstein Gravity + scalar field in D dimensions

Compaetifyextramensions with-aform flux-
Assume compactification, for simplicity
Einstein Gravity + scalar field in 4 dimensions

$$
\left\{\begin{array}{r}
n_{s}-1=? \\
r=?
\end{array}\right.
$$

Other possibilities?

$$
\frac{M_{(D)}^{D-2}}{2} \int d^{D} x \sqrt{-g^{(D)}}\left(R^{(D)}+\frac{1}{n M^{2 n-2}}\left(R^{(D)}\right)^{n}\right) D \neq 2 n
$$

c.f. S.Kaneda, S.V.Ketov and
N.Watanabe, Class.Quant.Grav. (2010)
H. Motohashi, Phys.Rev. D (2015)

Other possibilities ?

$$
\frac{M_{(D)}^{D-2}}{2} \int d^{D} x \sqrt{-g^{(D)}}\left(R^{(D)}+\frac{1}{n M^{2 n-2}}\left(R^{(D)}\right)^{n}\right) D \neq 2 n
$$

c.f. S.Kaneda, S.V.Ketov and
N.Watanabe, Class.Quant.Grav. (2010)
H. Motohashi, Phys.Rev. D (2015)

Other possibilities ?

$$
\frac{M_{(D)}^{D-2}}{2} \int d^{D} x \sqrt{-g^{(D)}}\left(R^{(D)}+\frac{1}{n M^{2 n-2}}\left(R^{(D)}\right)^{n}\right) D \neq 2 n
$$

c.f. S.Kaneda, S.V.Ketov and N.Watanabe, Class.Quant.Grav. (2010) H. Motohashi, Phys.Rev. D (2015)

$$
4 \leq \forall D \leq 10
$$

Inflation successfully occurs when and only when $D=2 n$

Effect of an additional term -analytical-

$$
\begin{gathered}
D=2 n \\
\frac{M_{(D)}^{D-2}}{2} \int d^{D} x \sqrt{-g^{(D)}}\left(R^{(D)}+\frac{1}{n M^{2 n-2}}\left(R^{(D)}\right)^{n}+\frac{\lambda}{m M^{2 m-2}}\left(R^{(D)}\right)^{m}\right)
\end{gathered}
$$

Effect of an additional term -analytical-

$$
\begin{gathered}
D=2 n \\
\frac{M_{(D)}^{D-2}}{2} \int d^{D} x \sqrt{-g^{(D)}}\left(R^{(D)}+\frac{1}{n M^{2 n-2}}\left(R^{(D)}\right)^{n}+\frac{\lambda}{m M^{2 m-2}}\left(R^{(D)}\right)^{m}\right) \quad \begin{array}{c}
\text { expected to appear } \\
\text { in high energy physics }
\end{array}
\end{gathered}
$$

Effect of an additional term -analytical-

$$
\frac{M_{(D)}^{D-2}}{2} \int d^{D} x \sqrt{-g^{(D)}}\left(R^{(D)}+\frac{1}{n M^{2 n-2}}\left(R^{(D)}\right)^{n}+\frac{\lambda}{m M^{2 m-2}}\left(R^{(D)}\right)^{m}\right) \quad \begin{array}{r}
\text { expected to appear } \\
\text { in high energy physics }
\end{array}
$$

Effect of an additional term -analytical-

$$
D=2 n \quad m \neq n
$$

$$
\left.\frac{M_{(D)}^{D-2}}{2} \int d^{D} x \sqrt{-g^{(D)}}\left(R^{(D)}+\frac{1}{n M^{2 n-2}}\left(R^{(D)}\right)^{n}+\frac{\lambda}{m M^{2 m-2}}\left(R^{(D)}\right)^{m}\right)\right)^{\text {K }}
$$

expected to appear
in high energy physics
perturbatively

$$
\left\{\begin{aligned}
n_{s}-1 & =-\frac{2}{N_{e}}\left[1+\mathbb{D D} \lambda N_{e}^{\frac{m-1}{n-1}}\right]+\mathcal{O}\left(N_{e}^{-2}\right) \\
r & =\frac{4(2 n-1)}{n-1} N_{e}^{-2}\left[1+\mathbb{D D} \lambda N_{e}^{\frac{m-1}{n-1}}\right]+\mathcal{O}\left(N_{e}^{-3}\right)
\end{aligned}\right.
$$

$>$ There is non-negligible correction if $\frac{1}{N_{e}}<\lambda N_{e}^{\frac{m-1}{n-1}}(\ll 1)$
$>$ The correction becomes small as $n=D / 2$ becomes large $\because 1<N_{e}$

Effect of an additional term -numerical\#1-

$$
D=2 n \quad m=n+1
$$

$$
\frac{M_{(D)}^{D-2}}{2} \int d^{D} x \sqrt{-g^{(D)}}\left(R^{(D)}+\frac{1}{n M^{2 n-2}}\left(R^{(D)}\right)^{n}+\frac{\lambda}{m M^{2 m-2}}\left(R^{(D)}\right)^{m}\right) \quad \text { c.f. Q.G.Huang, JCAP (2014) }
$$

Effect of an additional term -numerical\#1-

$$
D=2 n \quad m=n+1
$$

$$
\frac{M_{(D)}^{D-2}}{2} \int d^{D} x \sqrt{-g^{(D)}}\left(R^{(D)}+\frac{1}{n M^{2 n-2}}\left(R^{(D)}\right)^{n}+\frac{\lambda}{m M^{2 m-2}}\left(R^{(D)}\right)^{m}\right)
$$

c.f. Q.G.Huang, JCAP (2014)

Effect of an additional term -numerical\#1-

$$
D=2 n \quad m=n+1
$$

$$
\frac{M_{(D)}^{D-2}}{2} \int d^{D} x \sqrt{-g^{(D)}}\left(R^{(D)}+\frac{1}{n M^{2 n-2}}\left(R^{(D)}\right)^{n}+\frac{\lambda}{m M^{2 m-2}}\left(R^{(D)}\right)^{m}\right)
$$

Effect of an additional term -numerical\#1-

$$
D=2 n \quad m=n+1
$$

$$
\frac{M_{(D)}^{D-2}}{2} \int d^{D} x \sqrt{-g^{(D)}}\left(R^{(D)}+\frac{1}{n M^{2 n-2}}\left(R^{(D)}\right)^{n}+\frac{\lambda}{m M^{2 m-2}}\left(R^{(D)}\right)^{m}\right)
$$

Effect of an additional term -numerical\#2-

From $n_{s}=0.9665 \pm 0.0038$
[3]Planck Collaboration, arXiv:1807.06211
c.f. Q.G.Huang, JCAP (2014)
T. Asaka et al., PTEP 2016 (2016)

Effect of an additional term -numerical\#2-

From $n_{s}=0.9665 \pm 0.0038$
[3]Planck Collaboration, arXiv:1807.06211
c.f. Q.G.Huang, JCAP (2014)
T. Asaka et al., PTEP 2016 (2016)

	$D=2 n=4$	$D=2 n=10$	
$m=2$	(4D Starobinsky term)	${ }_{-0.9}^{(P B)}\|\lambda\| \lesssim \mathcal{O}(1)$	$\begin{aligned} & \left(N_{e}=50\right) \\ & \left(N_{e}=60\right) \end{aligned}$
$m=3$	${ }_{-2.3 \times 1}^{-9.5 \times{ }_{10}}\|\lambda\| \lesssim \mathcal{O}\left(10_{10^{-}}^{-5}\right) \begin{aligned} & \left(N_{e}=50\right) \\ & \left(N_{e}=60\right) \end{aligned}$	$\begin{aligned} & +1.1 \times 10^{-} \\ & -4.7 \times 10^{-} \end{aligned}\|\lambda\| \lesssim \mathcal{O}\left(10_{10^{-}}^{-1}\right)$	$\begin{aligned} & \left(N_{e}=50\right) \\ & \left(N_{e}=60\right) \end{aligned}$
$m=4$	${ }_{-1.1 \times 1}^{-5.3 \times 10}\|\lambda\| \lesssim \mathcal{O}\left(10_{10}^{-7}\right) \begin{aligned} & \left(N_{e}=50\right) \\ & \left(N_{e}=60\right) \end{aligned}$	$\begin{aligned} & +0.5 \times 10^{-1} \\ & -2.9 \times 10^{-} \end{aligned}\|\lambda\| \lesssim \mathcal{O}\left(10_{10}^{-1}\right)$	$\begin{aligned} & \hline\left(N_{e}=50\right) \\ & \left(N_{e}=60\right) \end{aligned}$
$m=5$	${ }_{-0.8 \times 1}^{-4.3 \times 10}\|\lambda\| \lesssim \mathcal{O}\left(10^{-9}\right) \begin{aligned} & \left(N_{e}=50\right) \\ & \left(N_{e}=60\right) \end{aligned}$	(10D Starobinsky term)	
$m=6$	$\begin{aligned} & -4.2 \times 10^{-} \\ & -0.6 \times 10^{-} \end{aligned}\|\lambda\| \lesssim \mathcal{O}\left(10_{10^{-1}}^{-11}\right) \begin{aligned} & \left(N_{e}=50\right) \\ & \left(N_{e}=60\right) \end{aligned}$	$\begin{aligned} & -3.8 \times 10^{-} \\ & -1.1 \times 10^{-} \end{aligned}\|\lambda\| \lesssim \mathcal{O}\left(10_{10}^{-2}\right)$	$\begin{aligned} & \hline\left(N_{e}=50\right) \\ & \left(N_{e}=60\right) \end{aligned}$
$m=7$	$\begin{aligned} & -4.5 \times 10^{-} \\ & -0.5 \times 10^{-} \end{aligned}\|\lambda\| \lesssim \mathcal{O}\left(10^{-13}\right) \begin{aligned} & \left(N_{e}=50\right) \\ & \left(N_{e}=60\right) \end{aligned}$	$\begin{aligned} & -6.4 \times 10^{-} \\ & -1.7 \times 10^{-} \end{aligned}\|\lambda\| \lesssim \mathcal{O}\left(10_{10}^{-3}\right)$	$\begin{aligned} & \hline\left(N_{e}=50\right) \\ & \left(N_{e}=60\right) \end{aligned}$
$m=8$	$\begin{array}{ll} -5.1 \times 10^{-} \\ -0.5 \times 10^{-} \end{array}\|\lambda\| \lesssim \mathcal{O}\left(10^{-15}\right) \quad \begin{aligned} & \left(N_{e}=50\right) \\ & \left(N_{e}=60\right) \end{aligned}$	$\begin{aligned} & -1.4 \times 10^{-3} \\ & -0.4 \times 10^{-} \end{aligned}\|\lambda\| \lesssim \mathcal{O}\left(10_{10}^{-3}\right)^{3}$	$\begin{aligned} & \hline\left(N_{e}=50\right) \\ & \left(N_{e}=60\right) \end{aligned}$

Effect of an additional term -numerical\#2-

From $n_{s}=0.9665 \pm 0.0038$
[3]Planck Collaboration, arXiv:1807.06211
c.f. Q.G.Huang, JCAP (2014)
T. Asaka et al., PTEP 2016 (2016)

	$D=2 n=4$	$D=2 n=10$	
$m=2$	(4D Starobinsky term)	${ }_{-0.9}^{(P B)}\|\lambda\| \lesssim \mathcal{O}(1)$	$\begin{aligned} & \left(N_{e}=50\right) \\ & \left(N_{e}=60\right) \end{aligned}$
$m=3$	$\begin{gathered} -9.5 \times 10 \\ -2.3 \times 1 \end{gathered}\|\lambda\| \lesssim \mathcal{O}\left(10_{10^{-}}^{-5}\right) \begin{aligned} & \left(N_{e}=50\right) \\ & \left(N_{e}=60\right) \end{aligned}$	$\begin{aligned} & +1.1 \times 10^{-} \\ & -4.7 \times 10^{-} \end{aligned}\|\lambda\| \lesssim \mathcal{O}\left(10_{10^{-}}^{-1}\right)$	$\begin{aligned} & \left(N_{e}=50\right) \\ & \left(N_{e}=60\right) \end{aligned}$
$m=4$	$\begin{aligned} & -5.3 \times 10 \\ & -1.1 \times 1 \end{aligned}\|\lambda\| \lesssim \mathcal{O}\left(10_{10}^{-7}\right) \quad \begin{aligned} & \left(N_{e}=50\right) \\ & \left(N_{e}=60\right) \end{aligned}$	$\begin{aligned} & +0.5 \times 10^{-1} \\ & -2.9 \times 10^{-} \end{aligned}\|\lambda\| \lesssim \mathcal{O}\left(10_{10}^{-1}\right)$	$\begin{aligned} & \hline\left(N_{e}=50\right) \\ & \left(N_{e}=60\right) \end{aligned}$
$m=5$	${ }_{-0.8 \times 1}^{-4.3 \times 10}\|\lambda\| \lesssim \mathcal{O}\left(10_{10}^{-9}\right) \begin{aligned} & \left(N_{e}=50\right) \\ & \left(N_{e}=60\right) \end{aligned}$	(10D Starobinsky term)	
$m=6$	$\begin{aligned} & -4.2 \times 10-10 \\ & -0.6 \times 10^{-} \end{aligned}\|\lambda\| \lesssim \mathcal{O}\left(10_{10^{-1}}^{-11}\right) \begin{aligned} & \left(N_{e}=50\right) \\ & \left(N_{e}=60\right) \end{aligned}$	$\begin{aligned} & -3.8 \times 10^{-} \\ & -1.1 \times 10^{-} \end{aligned}\|\lambda\| \lesssim \mathcal{O}\left(10_{10}^{-2}\right)$	$\begin{aligned} & \hline\left(N_{e}=50\right) \\ & \left(N_{e}=60\right) \end{aligned}$
$m=7$	$\begin{aligned} & -4.5 \times 10-1 \\ & -0.5 \times 10^{-} \end{aligned}\|\lambda\| \lesssim \mathcal{O}\left(10^{-13}\right) \begin{aligned} & \left(N_{e}=50\right) \\ & \left(N_{e}=60\right) \end{aligned}$	$\begin{aligned} & -6.4 \times 10^{-} \\ & -1.7 \times 10^{-} \end{aligned}\|\lambda\| \lesssim \mathcal{O}\left(10_{10}^{-3}\right)$	$\begin{aligned} & \hline\left(N_{e}=50\right) \\ & \left(N_{e}=60\right) \end{aligned}$
$m=8$	$\begin{aligned} & -5.1 \times 10^{-} \\ & -0.5 \times 10 \end{aligned}\|\lambda\| \lesssim \mathcal{O}\left(10^{-15}\right) \begin{aligned} & \left(N_{e}=50\right) \\ & \left(N_{e}=60\right) \end{aligned}$	$\begin{aligned} & -1.4 \times 10^{-3} \\ & -0.4 \times 10^{-} \end{aligned}\|\lambda\| \lesssim \mathcal{O}\left(10_{10}^{-3}\right)^{3}$	$\begin{aligned} & \hline\left(N_{e}=50\right) \\ & \left(N_{e}=60\right) \end{aligned}$

Hierarchical tuning is relaxed in higher dimensions

Summary

$>$ In order to investigate the origin of Starobinsky action,

$$
\text { it is important to consider } R^{(D)}+\sum_{m=2}^{\infty} \frac{\lambda_{m}}{m M^{2 m-2}}\left(R^{(D)}\right)^{m} \text { inflation. }
$$

\Rightarrow However there is a few researches besides $R^{(D)}+\frac{1}{n M^{2 n-2}}\left(R^{(D)}\right)^{n} \quad(D=2 n)$ model.
$>$ We clarify that

* $R^{(D)}+\frac{1}{n M^{2 n-2}}\left(R^{(D)}\right)^{n} \quad(D \neq 2 n)$ model can not cause successful inflation
*In $R^{(D)}+\frac{1}{n M^{2 n-2}}\left(R^{(D)}\right)^{n}+\frac{\lambda}{m M^{2 m-2}}\left(R^{(D)}\right)^{m} \quad(D=2 n, m \neq n)$ model,
the additional term affects the prediction of CMB observables.
*This requires hierarchical tuning of λ.
*However the hierarchy is relaxed in higher dimensions.
$>$ This results may make it easier to construct Starobinsky-like model
from the viewpoint of high energy physics.

