2nd July 2019

PASCOS 2019

Heavy Neutral Leptons from low-scale seesaws with the DUNE Near Detector

Peter Ballett, **Tommaso Boschi**, Silvia Pascoli tommaso.boschi@durham.ac.uk

Institute for Particle Physics Phenomenology University of Durham

Based on

arXiv:1905.00284

Neutrino mass problem

Solutions:

Problems:

- No ν_R in SM, so no Yukawa ($d \leq 4$).
- $m_{\nu} \ll m_e$, six orders of magnitude!
- ν can be a Majorana particle.

theory: many models and also minimal.

e.g. add heavy neutrinos to SM + seesaw.

phenomenology: not so nice.

e.g. Type I seesaw typically requires new particles at GUT scale.

experiment: need something appealing...

IPPP, Durham University

"Recipe" for a minimal inverse seesaw [A. Abada, M. Lucente, '14]

• Extend the SM by adding singlet fermions $N_{i=1..a}$ with $LN = +q_L$ and $S_{j=1..b}$ with $LN = -q_L$

 \Rightarrow symmetry-protection lower the physics scale!

- Majorana mass terms, with "natural" LNV parameters and cancellations among high scale contributions.
- Light neutrinos described ✓, but also new heavier particles: Heavy Neutral Leptons.
- Forbidden mixing angles and masses accessible by current and future experiment \$\$\$

Testable signatures

Sterile neutrinos mix with light neutrinos into flavour neutrinos: new particles take part to neutrino process thanks to mixing-suppressed couplings.

Regardless of model realisation, there is an HNL with mass in experimental range.

- kink in Curie plots of β decay (keV \sim MeV)
- $0\nu\beta\beta$ decay (keV \sim TeV)
- searches of <u>HNL</u> decays in beam dump experiments (MeV∼GeV)
- peak searches in pion and kaon decays (MeV~GeV)
- searches of LNV or cLFV events (MeV~GeV)
- collider searches of displaced vertices (TeV)

[A. Atre et al., '09]

[M. Drewes, B. Garbrecht, '17]

Signature HNL produced in a neutrino beam and then decay-in-flight inside the detector.

Production two- and three-body decays from pseudo-scalar meson $(\pi^{\pm}, K^{\pm}, K^0, D_S^{\pm})$, muon and tau decay.

Decay semi-leptonic two-body decays into charged and neutral **pseudo-scalar mesons** or vector mesons, leptonic three-body decay, radiative decay etc.

Current limits, predictions, and region of interest

.imits from	Predictions for
PS191, '86, '88	SBN, '17
PIENU, '18	SHiP, '16
CHARM II, '95	NA62, '18
NuTeV and E815, '95	FASER, '18
DELPHI, '99	
T2K. '19	

Regions of interest for neutrino mass models:

- Type I seesaw band (20 meV $< m_{\nu} < 0.2 \, \mathrm{eV}$).
- ISS (2,2) and ISS (2,3) in which HNL is a pseudo-Dirac neutrino.
- ISS (2,3) in which HNL is a Majorana.

Tommaso Boschi

Majorana vs Dirac and role of helicity

Practical Dirac-Majorana confusion theorem [Kayser, Shrock, 82] :

factor of two enhancement is absent for (almost) massless neutrinos, due to polarisation which suppresses $\Delta L = 2$ contributions.

For a charged current process

$$\mathrm{d}\Gamma\left(N \to \ell_{\alpha}^{-} X^{+}\right) = \mathrm{d}\Gamma\left(N_{D} \to \ell_{\alpha}^{-} X^{+}\right) \quad \text{ and } \quad \mathrm{d}\Gamma\left(N \to \ell_{\alpha}^{+} X^{-}\right) = \mathrm{d}\Gamma\left(\overline{N}_{D} \to \ell_{\alpha}^{+} X^{-}\right)$$

For a neutral current process

$$\mathrm{d}\Gamma\left(N \to \nu Y\right) = \mathrm{d}\Gamma\left(N_D \to \nu Y\right) + \mathrm{d}\Gamma\left(\overline{N}_D \to \overline{\nu}Y\right) \quad \Rightarrow \quad \Gamma(N \to \nu Y) = 2\,\Gamma\left(N_D \to \nu Y\right)$$

If mass effect is not negligible, Dirac and Majorana neutrinos have **distinct** total decay rates. **Neglecting charges** of final states gives same result for CC processes.

HNL beam is **not polarised** as light neutrinos are: arbitrariness of the polarisation \rightarrow total decay not affected by helicity, but **angular distribution** is!

$$\frac{\mathrm{d}\Gamma_{\pm}}{\mathrm{d}\Omega} pprox A$$
 for Majorana and $\frac{\mathrm{d}\Gamma_{\pm}}{\mathrm{d}\Omega} pprox A \mp B\cos heta$ for Dirac

The angular dependence is lost after integration over the PS.

Tommaso Boschi

DUNE Near Detector

Main goal is precision **oscillation physics**, but also large variety of complementary studies.

80 GeV proton beam impinging on graphite target

 1.32×10^{22} POT for 6 years in ν -mode (same POT in $\overline{\nu}$ -mode).

Near Detector is required to normalise flux and remove cross-section systematics.

Placed at 574 m from target \Rightarrow intense ν flux!

 $5 imes 10^6$ higher than at FD (1300 km), up to $E_{
u}=20\,{
m GeV}.$

- LArTPC with fiducial volume 24 m³ and mass 35 t.
- Multi Purpose Detector (MPD), gaseous TPC, fiducial volume 100 m³ and mass 1 t.
- LArTPC and MPD are movable (DUNE-PRISM).
- 3D Scintillation Tracker, on-axis, for flux monitoring and neutron contamination.

Number of events

Number of events \mathcal{N}_d to be compared with **background** \mathcal{N}_b (SM neutrino-nucleon interactions)

$$\mathcal{N}_d = \int \mathrm{d}E \; \mathrm{e}^{-rac{\Gamma_{\mathrm{tot}L}}{\gammaeta}} \left(1 - \mathrm{e}^{-rac{\Gamma_{\mathrm{tot}\lambda}}{\gammaeta}}
ight) rac{\Gamma_d}{\Gamma_{\mathrm{tot}}} rac{\mathrm{d}\phi_N}{\mathrm{d}E} W_d(E)$$

Parentage components of light neutrino beams are scaled by

 ${\cal K}^{\pm}_{X,lpha}(m_N)\equiv {\Gamma^{\pm}(X o NY)\over \Gamma\,(X o
u_{lpha} Y)}\;,$

to fix phase space and helicity.

 $\mathrm{d}\phi_N/\mathrm{d}E$ is the expected HNL beam at the ND site,

$$\frac{\mathrm{d}\phi_{N^{\pm}}}{\mathrm{d}E}(E_N)\approx\sum_{X,\alpha}\mathcal{K}^{\pm}_{X,\alpha}(m_N)\frac{\mathrm{d}\phi_{X\to\nu_{\alpha}}}{\mathrm{d}E}(E_N-m_N)$$

L = baseline $\lambda = length of detector$

 $W_d(E)$ is the **binned ratio** of E_{true} spectrum after and before the **background reduction**. Particle ID reduces background by a 10–10⁴ factor; to further reduce background:

- GENIE simulation of neutrino events in Ar
- Custom MC simulation of HNL decays

are input to fast MC of DUNE ND reconstruction and **kinematic distributions** are compared

For each channel, define **90% C.L. sensitivity** using Feldman & Cousins method [Feldman, Cousins, 98] in rejecting H_0 , "only background is observed".

IPPP, Durham University

Sensitivity to discovery

Combining regions of channels with **"good" detection sensitivity** (high branching ratio, controlled background):

$$N \to \nu e^+ e^-, \ \nu \mu^+ \mu^-, \ \nu e^\mp \mu^\pm, \ e^\mp \pi^\pm (|U_{eN}|^2), \ \mu^\mp \pi^\pm (|U_{\mu N}|^2), \ \nu \pi^0.$$

- Backgroundless lines ($N_d > 2.44$).
- Sensitivity above m_{K^0} thanks to production from D_s meson.
- Charge-ID washed out \Rightarrow sensitivity to Majorana HNL is 2× better than to Dirac.
- Sensitivities to other channels (also with background analysis) and to $|U_{\alpha N}^* U_{\beta N}|$ [P. Ballett, TB, Pascoli, '19].

solid line : Majorana HNL dashed line : Dirac HNL

Tommaso Boschi

IPPP, Durham University

Sensitivity to LNV ...work in progress...

Focusing on channel with best sensitivity: $N \to \ell^{\mp} \pi^{\pm}$. If we had beam in neutrino mode w/o contamination of $\overline{\nu}$, then

- if HNL is Dirac, only $\ell^-\pi^+$ expected at ND \rightarrow no events in the other channel!
- if HNL is Majorana, both $\ell^{\mp}\pi^{\pm}$ expected at ND with equal probability.

Contamination of $\overline{\nu}$ (unavoidable) requires more events in order to distinguish between the two hypotheses.

$$\begin{array}{c} \text{Dirac} & \text{Majorana} \\ \mathcal{N}_{N_{D} \rightarrow \ell^{-} \pi^{+}} \equiv \sigma_{-} > \sigma_{+} \equiv \mathcal{N}_{\overline{N}_{D} \rightarrow \ell^{+} \pi^{-}} & \text{vs} & \mathcal{N}_{N \rightarrow \ell^{-} \pi^{+}} = \mathcal{N}_{N \rightarrow \ell^{+} \pi^{-}} = \sigma_{-} + \sigma_{-} \end{array}$$

Tommaso Boschi

Conclusions

- The neutrino mass problem has numerous solutions, like the Inverse seesaw
- Different realisations of the model are reflected in different phenomenology (Dirac vs Majorana)
- Best experimental probe is decay in-flight of an HNL.
- It can be tested current/future experiments, like DUNE.
- The DUNE Near Detector has a vast complementary physics program.

Conclusions

- The neutrino mass problem has numerous solutions, like the Inverse seesaw
- Different realisations of the model are reflected in different phenomenology (Dirac vs Majorana)
- Best experimental probe is decay in-flight of an HNL.
- It can be tested current/future experiments, like DUNE.
- The DUNE Near Detector has a vast complementary physics program.

Take home message

- DUNE ND has exceptional sensitivity to discovery of HNL.
- In the region of 0.01 GeV $< m_N < 2$ GeV, $|U_{lpha N}|^2 < 10^{-10}$.
- Current limits extended and regions of theoretical interest reached.
- After discovery, nature of HNL could be determined.

Conclusions

- The neutrino mass problem has numerous solutions, like the Inverse seesaw
- Different realisations of the model are reflected in different phenomenology (Dirac vs Majorana)
- Best experimental probe is decay in-flight of an HNL.
- It can be tested current/future experiments, like DUNE.
- The DUNE Near Detector has a vast complementary physics program.

Take home message

- DUNE ND has exceptional sensitivity to discovery of HNL.
- In the region of 0.01 GeV $< m_N < 2$ GeV, $|U_{\alpha N}|^2 < 10^{-10}$.
- Current limits extended and regions of theoretical interest reached.
- After discovery, nature of HNL could be determined.

Thank you.