

Istituto Nazionale di Fisica Nucleare Sezione di Roma Tre

Dark Sector Physics with Belle II

Alberto Martini

Belle II group, University & INFN Roma Tre

XXV International Symposium PASCOS, Particle physics String theory and Cosmology

Manchester (UK), 1 July 2019

Belle II: second generation B-factory

B-factories: e^+e^- asymmetric-energy colliders \rightarrow production of quantum coherent $B\bar{B}$ pairs

Belle II detector

Belle II detector

Belle II operation status

Phase 1: SuperKEKB commissioning & background estimation

Completed

Completed

Phase 2: Collision runs with the detector installed partially, without the vertex detector → first physics data and results!

Phase 3: Data taken with the whole detector installed, **ongoing**!

March 2019

Dark matter knowledge

Large **halos** around Galaxies Rotation Curves

Comprises majority of mass in Galaxies Missing mass on Galaxy Cluster scale

Dark matter knowledge

Large **halos** around Galaxies Rotation Curves

Belle II

Comprises majority of mass in Galaxies Missing mass on Galaxy Cluster scale

Almost collisionless

Dark matter detection

Dark matter detection

Dark matter searches @Belle II (I)

Alberto Martini - Manchester, PASCOS - 1/07/2019

Belle II

Dark matter searches @Belle II (I)

Alberto Martini - Manchester, PASCOS - 1/07/2019

Belle II

Dark matter searches @Belle II (II)

Mediators studied at Belle II:

 Dark photon (vector-like portal)

 Z' mediator (vector-like portal)

• Axion Like Particle, ALP (pseudo-scalar portal)

Dark photon

Minimal model introducing the dark interaction comprises:

- A': dark photon. Boson mediator of the dark interaction with mass m_{A'} and spin 1
- ε : coupling parameter. It indicates the coupling intensity between the dark photon and the SM photon

$\gamma \rightarrow A'$	
$e^{-\sum_{i} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1$	

Dark photon: visible final state

Alberto Martini - Manchester, PASCOS - 1/07/2019

Minimal model introducing the dark interaction comprises:

- A': dark photon. Boson mediator of the dark interaction with mass m_{A'} and spin 1
- ε : coupling parameter. It indicates the coupling intensity between the dark photon and the SM photon
- **SM**: standard model particles

e, µ channels are the most promising (no neutrinos, no other peaking signals)

current limits

14

15

Dark photon: invisible final state (I)

Minimal model introducing the dark interaction comprises:

- A': dark photon. Boson mediator of the dark interaction with mass m_{A'} and spin 1
- \mathcal{E} : coupling parameter. It indicates the coupling intensity between the dark photon and the SM photon

 χ_2

 $\chi_{1,2}$: dark matter particles

A' decay into invisible states

performed only by Belle II thanks to the single photon dedicated trigger.

 e^+

6

Possible improvement of the limits with 2019 dataset \mathscr{L}^{int} =20 fb⁻¹

Dark photon into invisible final state (II)

Experimental signature of the event:

ONLY 1 high energetic photon in the event. Search for a peak around:

$$E_{\gamma} = \frac{s - m_{A'}}{2\sqrt{s}}$$

Physical background:

- $e^+e^- \longrightarrow \gamma\gamma(\gamma)$ where 1 or 2 photon are not detected
- $e^+e^- \longrightarrow e^+e^-\gamma$ where e^\pm usually go in the beam pipe
- Cosmic rays

Belle II has better sensitivity wrt BaBar due to the more hermetic detector (both ECL and KLM).

Dark photon into invisible final state (III)

Z' mediator: $L_{\mu} - L_{\tau}$ model (I)

Vector massive mediator $Z' \rightarrow \underline{non}$ minimal model

Z' couples with μ and τ only \rightarrow L_{μ} – L_{τ} model Possibility to also explain the g-2 and B anomalies w/ full statistics

Belle I

Z'→ visible final state already studied in BaBar

Z' mediator: $L_{\mu} - L_{\tau}$ model (I)

e⁺

e

Vector massive mediator $Z' \rightarrow \underline{non}$ minimal model

Z' couples with μ and τ only \rightarrow L_{μ} – L_{τ} model Possibility to also explain the g-2 and B anomalies w/ full statistics

Belle

 $\lambda_1, \bar{
u}$

Z' mediator: $L_{\mu} - L_{\tau}$ model (

Vector massive mediator $Z' \rightarrow \underline{non}$ minimal model

Z' couples with μ and τ only $\rightarrow L_{\mu} - L_{\tau}$ model Possibility to also explain the g-2 and B anomalies w/ full statistics

 $Z' \rightarrow visible$ final state already studied in BaBar

 $Z' \rightarrow invisible$ final state has not been measured yet

Belle II analysis ongoing \rightarrow aims to publish with dataset from 2018.

Alberto Martini - Manchester, PASCOS - 1/07/2019

Z' mediator: $L_{\mu} - L_{\tau}$ model (II)

Experimental signature:

Z' mass hypothesis \rightarrow search for a peak at $\mu^+\mu^-$ recoil mass distribution

Z' mediator: $L_{\mu} - L_{\tau}$ model (II)

Experimental signature:

Z' mass hypothesis \rightarrow search for a **peak at \mu^+\mu^- recoil mass** distribution Z' momentum (missing momentum) pointing to active part of the detector.

Z' mediator: $L_{\mu} - L_{\tau}$ model (II)

Experimental signature:

Z' mass hypothesis \rightarrow search for a **peak at \mu^+\mu^- recoil mass** distribution Z' momentum (missing momentum) pointing to active part of the detector.

Physical background:

- $e^+e^- \longrightarrow \mu^+\mu^-\gamma(\gamma)$ for low $m_{Z'}$
- Tau decays: important effort on background rejection using kinematic variables.
 Dominant contribution in the studied mass range.

Axion Like Particles searches (I)

Belle II 0.472 fb

Belle II 135 fb

expected 2019

dataset

Pb

РЬ

 10^{1}

Axion-Like Particles (ALPs) a: pseudo-scalar mediator. Coupling with bosons \rightarrow Belle II investigates $a \longrightarrow \gamma \gamma$ No relation between mass and coupling.

Jeam dumps

electron bear

 $g_{a\gamma Z}=0$

10⁻³

SN1987A

10⁻²

 $ee \rightarrow \gamma\gamma$

 10^{-1}

No previous results \rightarrow Belle II will provide first measurement with data from 2018

10⁻¹

10⁻²

10

10⁻⁴

10⁻⁵

10⁻⁶

10⁻⁷

10⁻⁸ `

-4

10

 $g_{a\gamma\gamma}[{
m GeV}^-$

Alberto Martini - Manchester, PASCOS - 1/07/2019

10⁰

 $m_a [\text{GeV/c}^2]$

Axion Like Particles searches (I)

Axion-Like Particles (ALPs) **a:** pseudo-scalar mediator. Coupling with bosons \rightarrow Belle II investigates $a \longrightarrow \gamma \gamma$ No relation between mass and coupling.

 e^+ $e^ \gamma$ γ γ γ γ

No previous results → Belle II will provide first measurement with data from 2018

B decays physics allow to investigate charged couplings

 10^{1} Belle II \mathscr{L}^{int} > $1ab^{-1}$ → possibility 2] to get new results also in decays into charged bosons.

Axion Like Particles searches (II)

Axion Like Particles searches (II)

Other dark sector studies @Belle II

- Z' with Lepton Flavor Violation
- Dark scalar mediator: $e^+e^- \rightarrow \tau^+\tau^-S, S \rightarrow l^+l^-$

- Magnetic monopoles with small magnetic charges
- Invisible $\Upsilon(1S)$ decays via $\Upsilon(3S) \to \Upsilon(1S)\pi^+\pi^-$
- Dark Higgs Higgstrahlung
- and many others!!

Conclusions

• Belle II started to collect data and investigate light Dark Sector models.

- Invisible dark photon search: first Belle II results from 20 fb⁻¹
- Vector boson Z' \rightarrow invisible: non minimal model which will provide the first measurement ever with data from 2018.
- ALPs measurements: visible channel $a \rightarrow \gamma \gamma$ will be published with data from 2018

• It is early (statistical reasons) for plenty of other dark searches!

Emergency slides!!

Belle II: second generation B-factory

