CMB Spectral Distortions: a Robust Probe of Primordial Non-Gaussianity

Giovanni Cabass

Max Planck Institute for Astrophysics, Garching

with Enrico Pajer and Drian van der Woude JCAP 021P 0618

Review of CMB (μ -type) Spectral Distortions

Photon thermodynamics: early times

- early universe: hot photon-baryon-electron plasma;
- before $z_{\mu,i} \simeq 2 \times 10^6$, double Compton scattering $(e^- + \gamma \to e^- + 2\gamma)$ and Bremsstrahlung are very efficient;
- then: perfect thermodynamical equilibrium. Any perturbation to the system is thermalized.

0.30

photons can be created at low ν and rescattered to high ν

black-body spectrum

$$n(x) \propto \frac{x^2}{e^x - 1}$$
$$(x = h\nu/k_BT)$$

is achieved

Photon thermodynamics: μ -era

- between $z_{\mu,i} \simeq 2 \times 10^6$ and $z_{\mu,f} \simeq 5 \times 10^4$ double Compton scattering and Bremsstrahlung are not efficient enough to create photons;
- elastic Compton scattering $(e^- + \gamma \rightarrow e^- + \gamma)$ maintains kinetic equilibrium;
- photon number effectively frozen (except at low ν).

energy injections in primordial plasma will distort the BB spectrum

$$n(x) \propto \frac{x^2}{e^{x+\mu}-1}$$

Bose-Einstein spectrum with chemical potential μ

Sunyaev, Zel'dovich, 1970; Danese, de Zotti, 1982; Burigana, Danese, de Zotti, 1991 Hu, Silk, 1994; Chluba, Sunyaev, 2011; Kathri, Sunyaev, 2012; Chluba, 2016

Generation of μ -distortions

$$N_{\text{B-E}}(T(E+\delta E,\mu),\mu) = N_{\text{P}}(T(E))$$
 \Rightarrow $\mu = 1.40066 \times \frac{\delta E}{E}$

What $\delta E/E$?

Silk damping

$$\delta_{\gamma}(m{k}) \propto \zeta_{m{k}} \cos(k r_{\rm s}) e^{-rac{k^2}{k_D^2}}$$

$$\frac{\delta E}{E} pprox \frac{1}{4} \left\langle \delta_{\gamma}^2(t, \boldsymbol{x}) \right\rangle_{\mathcal{P}} \Big|_{z_{\mu, f}}^{z_{\mu, i}}$$

average over a period of oscillation

---- λ_D : Silk damping scale ---- λ_{mfp} : photon mean free path

$$k_D(z_{\mu,f}) \approx 50 \, \mathrm{Mpc^{-1}}$$
, $k_D(z_{\mu,i}) \approx 10^4 \, \mathrm{Mpc^{-1}}$

After end of the μ era

- after $z_{\mu,f}$: inefficient energy exchange between electrons and photons
- photon number is still effectively frozen \Rightarrow y-distortion of the spectrum
- (several astrophysical foregrounds create y-dist. (e.g. SZ effect): not as clean as μ -dist.) but... See Ravenni et al. (2017)

 μ is conserved from $z=z_{\mu,f}$ to the last-scattering surface!

we will go back to this later...

 μ anisotropies and non-Gaussianity

With local non-Gaussianity

In presence of local NG, the heating rate becomes spatially dependent!

Short-scale power spectrum is correlated with the long mode \to is correlated with the long-wavelength T perturbation! Angular power spectrum $C_{\ell \lesssim 100}^{\mu T} \approx 12 f_{\rm NL}^{\rm loc.} C_{\ell}^{TT}$

However! In every patch a local observer cannot see the coupling with ζ_{ℓ} in single-field inflation! No μ -T correlations in this case?

 $\mathbf{But} \to \mathbf{be}$ careful about projection effects! E.g.: CMB squeezed bispectrum

$$B_{\ell_L,\ell_S}^{TTT} = C_{\ell_L}^{TT} C_{\ell_S}^{TT} \left(2 - \frac{\mathsf{d} \log(\ell_S^2 C_{\ell_S}^{TT})}{\mathsf{d} \log \ell_S} \right)$$

 $\ell_L \lesssim 100$ Creminelli, Pitrou, Vernizzi (2011) Bartolo, Matarrese, Riotto (2011)

any deviation is $\propto f_{\rm NI} - (1 - n_{\rm S})$

e.g.:

Pajer, Schmidt, Zaldarriaga (2013) Mirbabayi and Zaldarriaga (2014)

Projection effects

- 1. same physical length in the local patch at recombination appears at different angular sizes to the observer
- 2. photons experience a different redshift in different directions due to the presence of the long mode

for
$$C_{\ell}^{\mu T}$$

- 1. we are looking at the average μ in a patch o no "ruler" whose length the long mode can perturb
- 2. μ does not redshift

$$\frac{\mathsf{D}f_{\gamma}}{\mathsf{d}\lambda} = 0 \Rightarrow \begin{cases} T_{\mathsf{obs}} = \frac{E_{\mathsf{obs}}}{E_{\mathsf{rec}}} T_{\mathsf{rec}} \\ \mu_{\mathsf{obs}} = \mu_{\mathsf{rec}} \end{cases}$$

No correlation from evolution from the LSS to the observer... What is the leading effect?

Evolution after the end of the μ -era

damping of μ inhomogeneities! Pajer and Zaldarriaga, 2012

no effect on $\langle \mu \rangle \dots$

Let's check the fluid limit of the Boltzmann equation

$$P^{\mu} = E(U^{\mu} + m^{\mu})$$
, $\mu = \mu(x^{\nu}, m^{\nu})$, $\mu_0 = \int \frac{d\hat{m}}{4\pi} \mu$

$$\mu = \mu(x^{\nu}, m^{\nu})$$

$$\mu_0 = \int \frac{\mathrm{d}\boldsymbol{m}}{4\pi} \mu$$

Fluid limit of Boltzmann equation – 1

for $t_{\gamma} \rightarrow 0$ the distribution is brought to equilibrium

$$\frac{1}{E} \frac{\mathrm{D}\mu}{\mathrm{d}\lambda} = \frac{\mu - \mu_0}{t_\gamma}$$
 photon m.f.p.

$$U^{\nu}\nabla_{\nu}\mu + m^{\nu}\nabla_{\nu}\mu + (U^{\rho} + m^{\rho})(\nabla_{\rho}m^{\nu})P^{\lambda}_{\ \nu}\frac{\partial\mu}{\partial m^{\lambda}} = \frac{\mu - \mu_{0}}{t_{\gamma}}$$

In the tight-coupling limit, only the monopole will be relevant:

- expand $\mu = \mu_0 3m^{\nu}P_{\nu}^{\ \rho}\nabla_{\rho}\mu_1$ (monopole + dipole: higher multipoles will be suppressed)
- take moments $\int \frac{d\hat{m}}{4\pi} m^{\mu} m^{\nu} \dots$: only first two moments are needed

Fluid limit of Boltzmann equation – 2

mixed equations for μ_0 and μ_1 \downarrow acceleration θ^μ gives complicated mixing at 2nd order

But! We are interested in the effect of a long mode on short modes! If ζ_{ℓ} is practically uniform $\rightarrow (\theta^{\mu})_{\ell} = 0$

We can obtain an equation for μ_0 only!

$$\underbrace{\left[U^{\nu}\nabla_{\nu}(U^{\rho}\nabla_{\rho}) - \underbrace{\frac{D_{\nu}D^{\nu}}{3} - \left(\frac{\nabla_{\mu}U^{\mu}}{3} - \frac{1}{t_{\gamma}}\right)U^{\nu}\nabla_{\nu}\right]}_{(D_{\mu} = P_{\mu}{}^{\nu}\nabla_{\nu})}^{\mu_{0} = 0}$$

an homogeneous μ_0 is conserved along the fluid lines: $U^{\nu}\nabla_{\nu}\mu_0=0!$

What happens during the μ -era?

Effect of the long mode on μ production! In principle, complicated non-linear dynamics. . .

Exploit another nice difference with CMB bispectrum: horizon at end of μ era is $\approx 10^{-1}\,\mathrm{Mpc^{-1}}$

Up to very high $\ell\gg 100$ we can treat the effect with the separate universe approach! similarly to halo bias... E.g.: Dai, Pajer, Schmidt, 2015

Long mode modifies the expansion history and adds curvature $K_F \propto \partial^2 \mathcal{R}$ to the FLRW:

- 1. modification the duration of the μ era
- 2. direct effect on the evolution of short modes
- 3. additional coupling to $K_F \propto \partial^2 \mathcal{R}$ from inflation. It is of order $1-n_s$: can be neglected unless there are (unlikely) cancellations of 1. and 2. GC, Pajer, Schmidt, 2016

Model this by a bias parameter:
$$\langle \mu_S \rangle_{\zeta_L} (\eta, \boldsymbol{x}) = \langle \mu_S \rangle_{\zeta_L = 0} - \frac{b_1}{\Lambda^2} \partial^2 \zeta_L (\eta, \boldsymbol{x}) \langle \mu_S \rangle_{\zeta_L = 0}$$
 with: $\Lambda = \mathcal{H}(z_{\mu,f}), \ b_1 = \mathcal{O}(1)$

Will this effect bias constraints on f_{NL}^{loc} ?

check with a forecast for full-sky cosmic variance-limited experiment!

Conclusions

- \blacktriangleright CMB μ -type distortions probe small scales, 50 Mpc $^{-1} \lesssim k \lesssim 10^4 \, {\rm Mpc}^{-1}$
- \blacktriangleright very sensitive to primordial local non-Gaussianity through μ anisotropies

- \blacktriangleright in single-field inflation (practically) no μ -T correlations:
 - no projection effects from last-scattering surface to observer
 - no effects from tight-coupling evolution
 - bias effect on μ production: absolutely negligible impact on $f_{\rm NL}^{\rm loc}$ forecasts!

Thanks!

Backup slides

Hydrodynamical description of μ generation

Viscous corrections \rightarrow entropy production: $U^{\mu}\nabla_{\mu}\left(\frac{s}{n}\right) = -\frac{\Delta T^{\mu\nu}\nabla_{\nu}U_{\mu}}{nT}$

s, n: entropy and number density for observer U^{μ} . For a black-body \rightarrow

$$\frac{s}{n} \propto 1 + (A_s - A_n)\mu \implies U^{\nu}\nabla_{\nu}\mu = \frac{8t_{\gamma}}{15(A_n - A_s)}\sigma_{\mu\nu}\sigma^{\mu\nu}$$

$$\sigma_{\mu\nu}\sigma^{\mu\nu}\sim a^{-2}(\partial_i v_j)^2$$
, $t_{\gamma}\approx a^2H/k_{\rm D}^2$

$$\frac{\dot{\mu}}{H} \sim \frac{(\partial_i v_j)^2}{k_D^2} \implies \mu \text{ production suppressed by } \frac{\partial^2}{k_D^2}$$

Some details of tight-coupling evolution

$$U^{\nu}\nabla_{\nu}\mu + m^{\nu}\nabla_{\nu}\mu + \left[(m^{\rho}\theta_{\rho} + m^{\rho}m^{\sigma}\theta_{\rho\sigma})m^{\lambda} - \theta^{\lambda} - m^{\rho}\theta_{\rho}^{\lambda} \right] \frac{\partial\mu}{\partial m^{\lambda}} = \frac{\mu - \mu_{0}}{t_{\gamma}}$$

$$\theta^{\mu} = U^{\nu}\nabla_{\nu}U^{\mu} \qquad \theta_{\mu\nu} = P_{\mu}{}^{\rho}\nabla_{\rho}U_{\nu} \qquad P_{\mu\nu} = g_{\mu\nu} + U_{\mu}U_{\nu}$$

Assume $\mu=\mu_0-3m^{\nu}P_{\nu}^{\rho}\nabla_{\rho}\mu_1$ and take moments: $\int \frac{\mathrm{d}\hat{m}}{4\pi}$ and $\int \frac{\mathrm{d}\hat{m}}{4\pi}m^{\mu}$

$$U^{\nu}\nabla_{\nu}\mu_{0} + 4\theta^{\nu}D_{\nu}\mu_{1} - D_{\nu}D^{\nu}\mu_{1} = 0$$

$$\frac{D^{\nu}\mu_{0}}{3} - \frac{4\theta^{(\nu\rho)}D_{\rho}\mu_{1}}{5} - \frac{2\theta D^{\nu}\mu_{1}}{5} + 3\theta^{\nu\rho}D_{\rho}\mu_{1} - \theta^{\nu}U^{\rho}\nabla_{\rho}\mu_{1} - D^{\nu}(U^{\rho}\nabla_{\rho}\mu_{1}) = \frac{D^{\nu}\mu_{1}}{t_{\gamma}}$$

- assume uniform $\zeta_{\ell} \Rightarrow \theta_{\mu\nu} = \frac{\nabla_{\rho}U^{\rho}}{3} P_{\mu\nu}, \; \theta^{\mu} = 0$
- take D_{ν} of second equation

$$U^{\nu}\nabla_{\nu}\mu_{0} - D_{\nu}D^{\nu}\mu_{1} = 0$$

$$U^{\nu}\nabla_{\nu}(U^{\rho}\nabla_{\rho}\mu_{0}) - \frac{D_{\nu}D^{\nu}\mu_{0}}{3} - \left(\frac{\theta}{3} - \frac{1}{t_{\gamma}}\right)D_{\nu}D^{\nu}\mu_{1} = 0$$