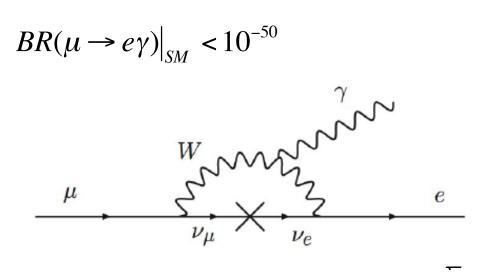
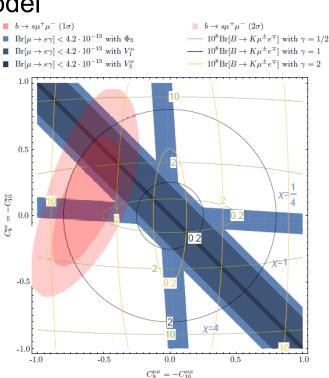

Status and prospects of charged lepton flavor violation searches with the MEG-II experiment

Cecilia Voena

INFN Roma

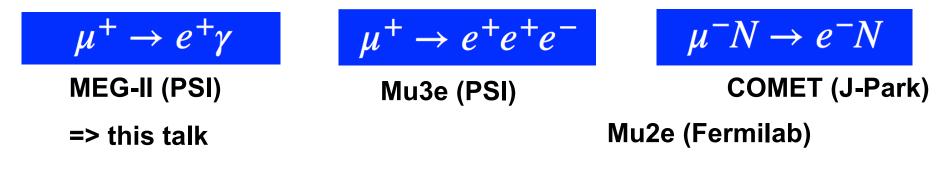

Istituto Nazionale di Fisica Nucleare


on behalf of the MEG-II collaboration

XXV International Symposium PASCOS 2019 Manchester, 1-5 July 2019

Charged Lepton Flavor Violation (cLFV)

• Allowed but unobservable in the Standard Model (with neutrino mass $\neq 0$), e.g. $\mu \rightarrow e\gamma$


Crivellin et. al. arXiv:1706.08511

 Enhanced, sometimes just below the experimental limit, in many New Physics models

Observation of cLFV is a clean signal of Physics beyond the Standard Model

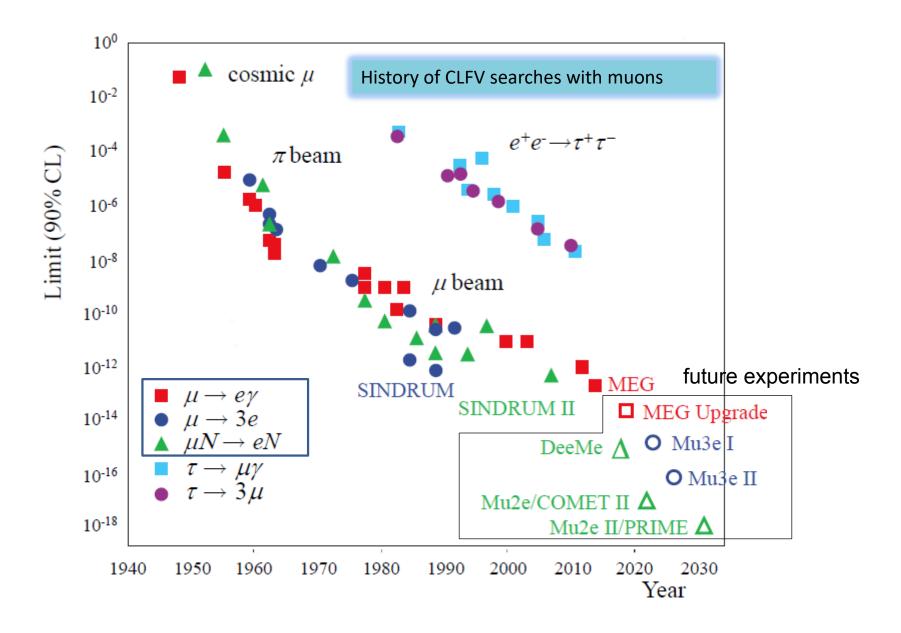
Search for New Physics at the Intensity Frontier

- Probe New Physics at very high energy scales: $\Lambda > 10^2-10^4$ TeV
- Very intense beams are needed
- High intensity frontier: complementarity with high energy frontier (LHC)
- Flavor is the usual graveyard of BSM EW theory (European strategy @Granada)
- Muons golden processes

• Not only muons: т, EDM...

New Physics Reach

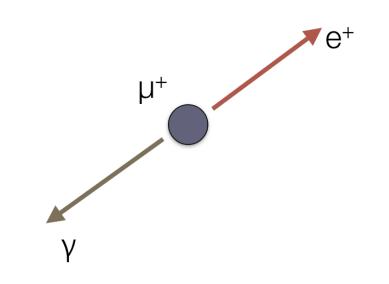
 Limits on the Wilson coefficients of LFV effective operators from present and future cLFV muon processes


	$\operatorname{Br}\left(\mu^{+} \to e^{+}\gamma\right)$		$ \mathrm{Br}(\mu^+ \to$	$\rightarrow e^+e^-e^+)$	${ m Br}^{ m Au/Al}_{\mu ightarrow e}$		
	$4.2 \cdot 10^{-13}$	$4.0 \cdot 10^{-14}$	$1.0 \cdot 10^{-12}$	$5.0 \cdot 10^{-15}$	$7.0 \cdot 10^{-13}$	$1.0 \cdot 10^{-16}$	
C_L^D	$1.0 \cdot 10^{-8}$	$3.1 \cdot 10^{-9}$	$2.0 \cdot 10^{-7}$	$1.4 \cdot 10^{-8}$	$2.0 \cdot 10^{-7}$	$2.9 \cdot 10^{-9}$	
$C_{ee}^{S \ LL}$	$4.8 \cdot 10^{-5}$	$1.5 \cdot 10^{-5}$	$8.1 \cdot 10^{-7}$	$5.8 \cdot 10^{-8}$	$1.4 \cdot 10^{-3}$	$2.1\cdot 10^{-5}$	
$C^{S \ LL}_{\mu\mu}$	$2.3 \cdot 10^{-7}$	$7.2 \cdot 10^{-8}$	$4.6 \cdot 10^{-6}$	$3.3\cdot10^{-7}$	$7.1\cdot 10^{-6}$	$1.0\cdot10^{-7}$	
$C_{\tau\tau}^{\dot{S}\ LL}$	$1.2 \cdot 10^{-6}$	$3.7 \cdot 10^{-7}$	$2.4 \cdot 10^{-5}$	$1.7 \cdot 10^{-6}$	$2.4 \cdot 10^{-5}$	$3.5 \cdot 10^{-7}$	
$C_{\tau\tau}^{T\ LL}$	$2.9 \cdot 10^{-9}$	$9.0 \cdot 10^{-10}$	$5.7 \cdot 10^{-8}$	$4.1 \cdot 10^{-9}$	$5.9 \cdot 10^{-8}$	$8.5 \cdot 10^{-10}$	
$C_{\tau\tau}^{S\ LR}$	$9.4 \cdot 10^{-6}$	$2.9 \cdot 10^{-6}$	$1.8 \cdot 10^{-4}$	$1.3 \cdot 10^{-5}$	$1.9 \cdot 10^{-4}$	$2.7 \cdot 10^{-6}$	
$C_{bb}^{S\ LL}$	$2.8 \cdot 10^{-6}$	$8.6 \cdot 10^{-7}$	$5.4 \cdot 10^{-5}$	$3.8\cdot10^{-6}$	$9.0 \cdot 10^{-7}$	$1.2 \cdot 10^{-8}$	

arXiv:170203020 A. Crivellin et al.

1 column = present best limit 2 column = future limit

....


History of cLFV Searches

Why $\mu \rightarrow e\gamma$?

- Intense muon beams available:
 - PSI presently: up to $10^8~\mu/s$, future perspectives: $10^9\text{--}10^{10}~\mu/s$
- Clean experimental signature

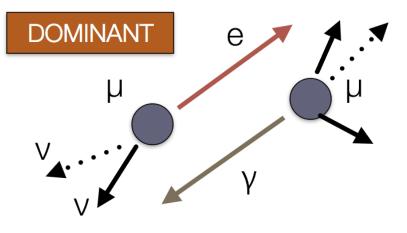
positive muon decays at rest

Simultaneous, back-to-back, monochromatic e^+ and γ with E_{γ} = E_{e^+} = 52.8 MeV

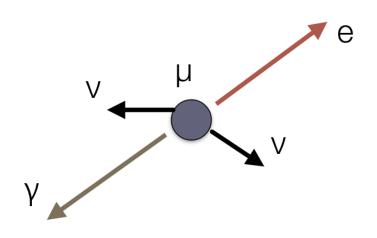
Discriminating variables:

energies: E_{e^+}, E_{γ} relative time: $T_{e\gamma}$ relative angle: $\Theta_{e\gamma}$

$\mu \rightarrow e\gamma$ Backgrounds


Accidental

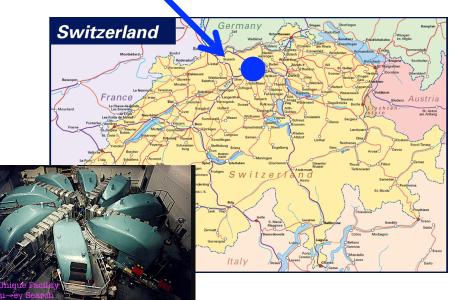
- accidental coincidence of $e^{\scriptscriptstyle +}$ and γ
- proportional to ${\Gamma^2}_\mu$ for given detector resolutions
- signal proportional to Γ_{μ}


(Γ_{μ} = beam intensity)

$$B_{\rm acc} \circ \Gamma^2_{\mu} \cdot \delta E_e \cdot (\delta E_{\gamma})^2 \cdot \delta T_{e\gamma} \cdot (\delta \Theta_{e\gamma})^2$$

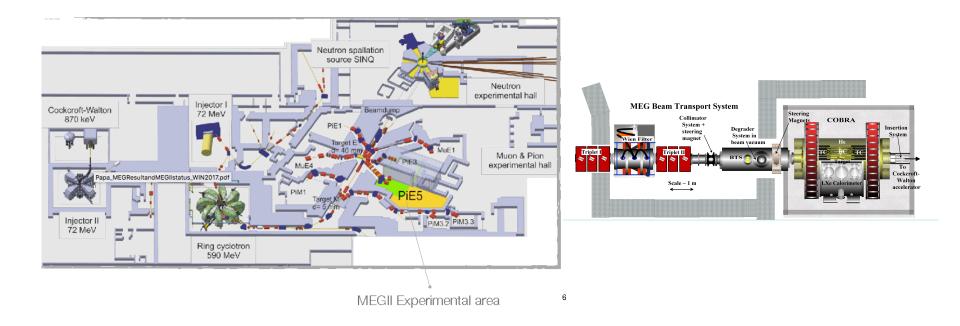
Michel or radiative decay: $\mu \rightarrow e(\gamma)vv$

- Radiative muon decay
- proportional to Γ_{μ}
- e⁺ and γ simultaneous as for signal
- thus peaking in the T_{ev} variable



The MEG(II) Location: PSI

- Paul Scherrer Institute
 - continuous muon beam up to few $10^8 \,\mu^+/s$



- Multi-disciplinary lab:
 - fundamental research, cancer therapy, muon and neutron sources
 - protons from cyclotron
 (D = 15m, E_{proton} = 590MeV
 P = 1.4MW)

The PSI Surface Muon Beam

- Decay at rest of $\pi^{\scriptscriptstyle +}$ on the target surface
- Select positive muons to avoid caputre (P_µ~29 MeV)
- It is possible to focalize and stop the muons in a thin target to reduce multiple scattering of the e⁺

The MEG Experiment for $\mu \rightarrow e\gamma$ Search

liq.Xenon photon detector (~900PMTs/~900L LXe, excellent resol.)

muon stopping target (200um CH2 target)

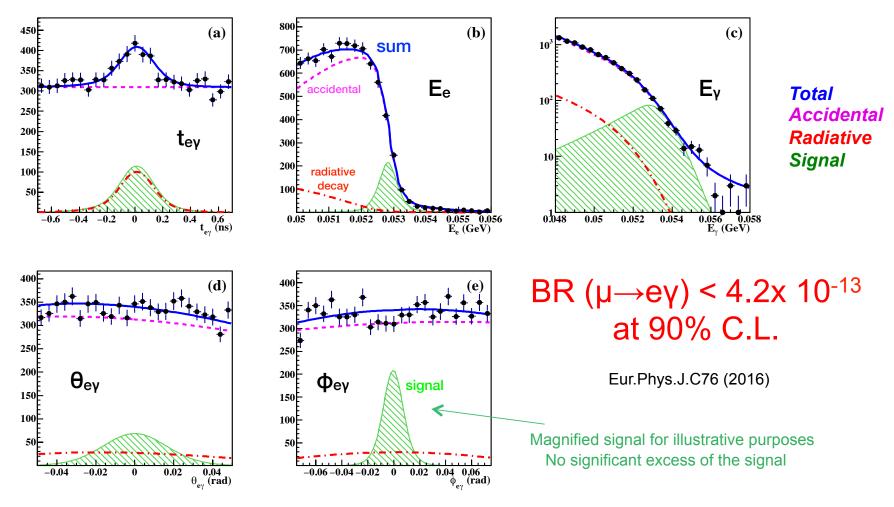
~65 physicists (12institutes/5countries)

muon transport

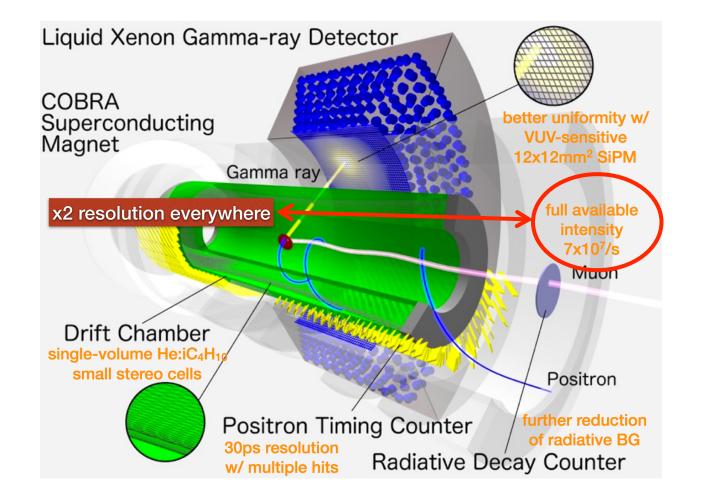
COBRA Solenoid

(highly gradient B-field)

Timing Counter (Very Fast, 45ps)

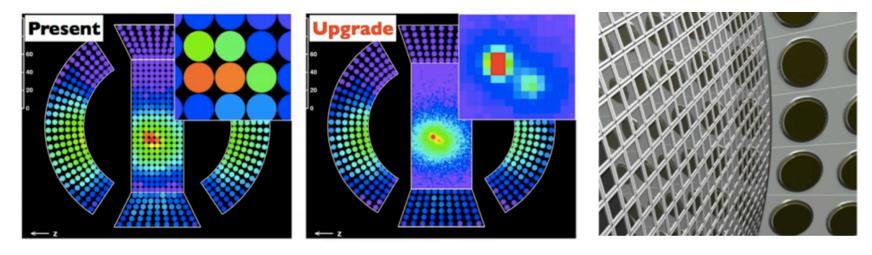

(Very Light, ~0.002X0)

World Most Intense DC Muon (3x10⁷ muon/sec)

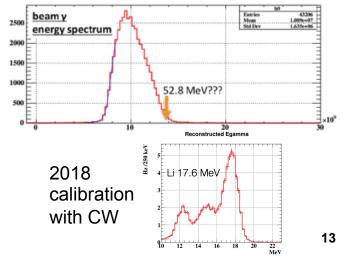

MEG BR($\mu \rightarrow e\gamma$) Limit Result

- 7.5 x 10¹⁴ stopped muons in 2009-2013
- 5 discriminating variables: E_e , E_{γ} , $T_{e\gamma}$, $\theta_{e\gamma}$, $\phi_{e\gamma}$
- Likelihood analysis + frequentistic approach

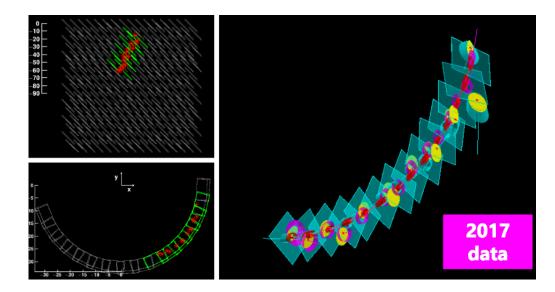
Next: MEG Upgrade: MEG-II

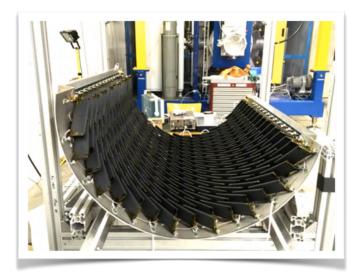

- Same detector concept as in MEG
- Increase beam intensity from 3 x 10⁷ μ /s to 7 x 10⁷ μ /s
- Cannot exploit full available beam intensity due to accidental background

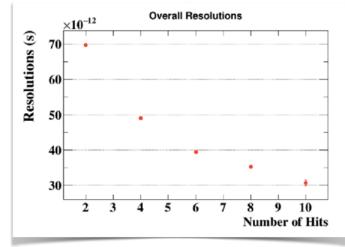
optimized to enhance sensitivity (accidental background prop. to l² _µ)


MEG-II Detector Highlights: Liquid Xenon

Liquid Xenon Calorimeter with higher granularity in inner face:
 better resolution, better pile-up rejection

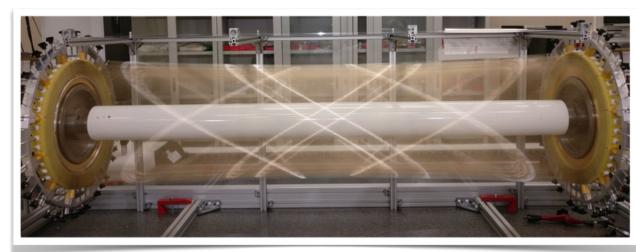

First events/spectra from 2017 data

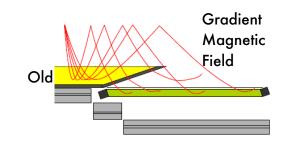

- Developed UV sensitive MPPC
 vacuum UV 12x12mm² SiPM
- Commissioned during 2017 and 2018 pre-engineering runs

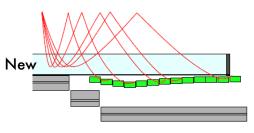


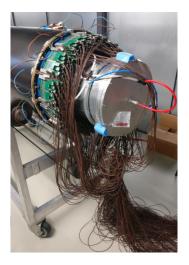
MEG-II Detector Highlights: Timing Counters

- High granularity:
 - 2 sections of 256 plastic scintillator tiles
 - tiles read by 3x3 mm² SiPM
- Complete detector took data in 2017 & 2018
 - already reached design resolution
 - σ_T=~35ps





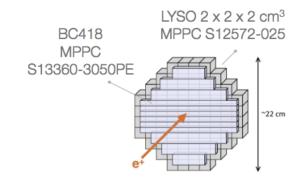



MEG-II Detector Highlights: Drift Chamber

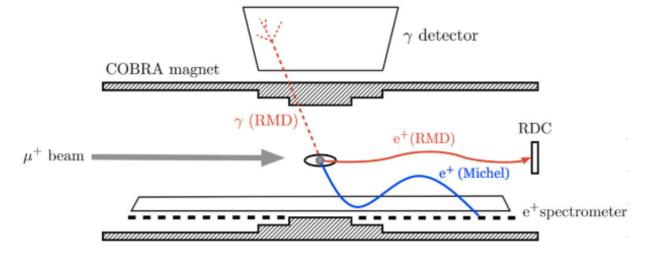
- Single volume drift chamber with 2π coverage
 - low mass single volume
 - 2m long ,1300 sense wires
 - stereo angle (6°-8°)
 - high trasparency to TC
- Delay due to problems of wire fragility in presence of contaminants+humidity
- Succesfully installed and took data in pre-engineering run 2018 (only few electronic channels)

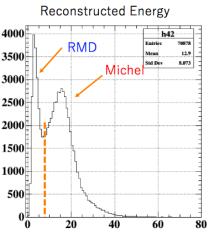
MEG-II Detector Highlights: Drift Chamber

- Electrostatic stability problems in 2018 run => inner layers could not reach • the working point
- Wire elongation in Spring 2019 •
- New HV tests show that all the chamber can be operated at the working • point with 100V safety margin

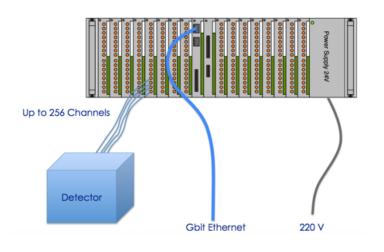

Working point 1400-1500V @ 5 x 10⁵ gain, He-Iso 90-10

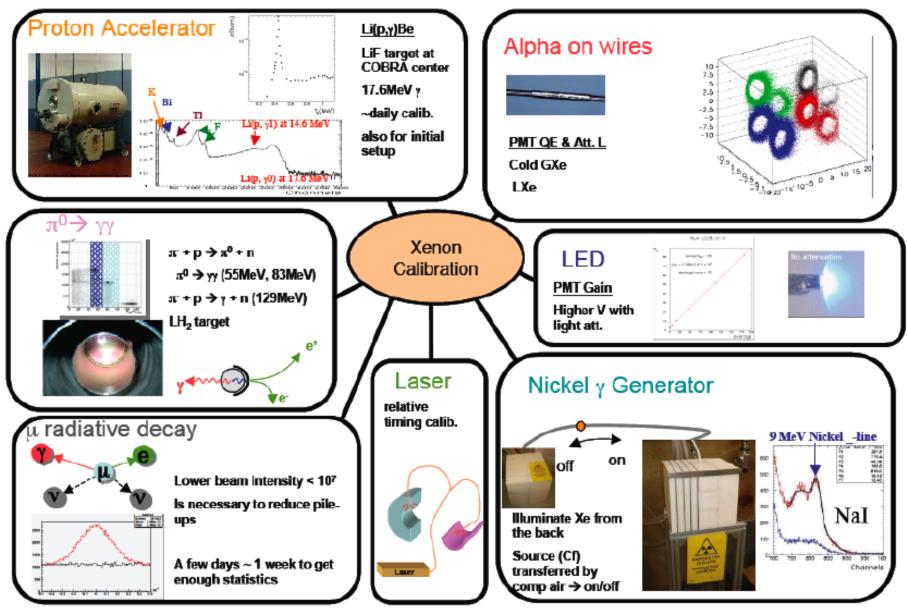
Layer	50	51	52	53		55		57		59	S10	511
9 (1500 V)	1500	1500	1500	1500	1500	1430	1500	1500	1500	1500	1500	1500
8 (1510 V)	1510	1510	1510	1500	1510	1510	1510	1510	1510	1510	1510	1510
7 (1520 V)	1520	1520	1520	1520	1520	1520	1520	1520	1520	1520	1520	1520
6 (1530 V)	1530	1530	1530	1530	1530	1530	1530	1530	1530	1530	1530	1530
5 (1540 V)	1540	1540	1540	1540	1540	1540	1540	1540	1540	1540	1540	1540
4 (1550 V)	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550
3 (1560 V)	1560	1560	1560	1560	1560	1560	1560	1560	1560	1560	1560	1560
2 (1570 V)	1570	1570	1570	1570	1570	1570	1570	1570	1570	1570	1570	1570
1 (1580 V)	1580	1580	1580	1580	1580	1580	1580	1580	1580	1580	1580	1580
/orking point + 100V green = goal reached												


Working point + 100V

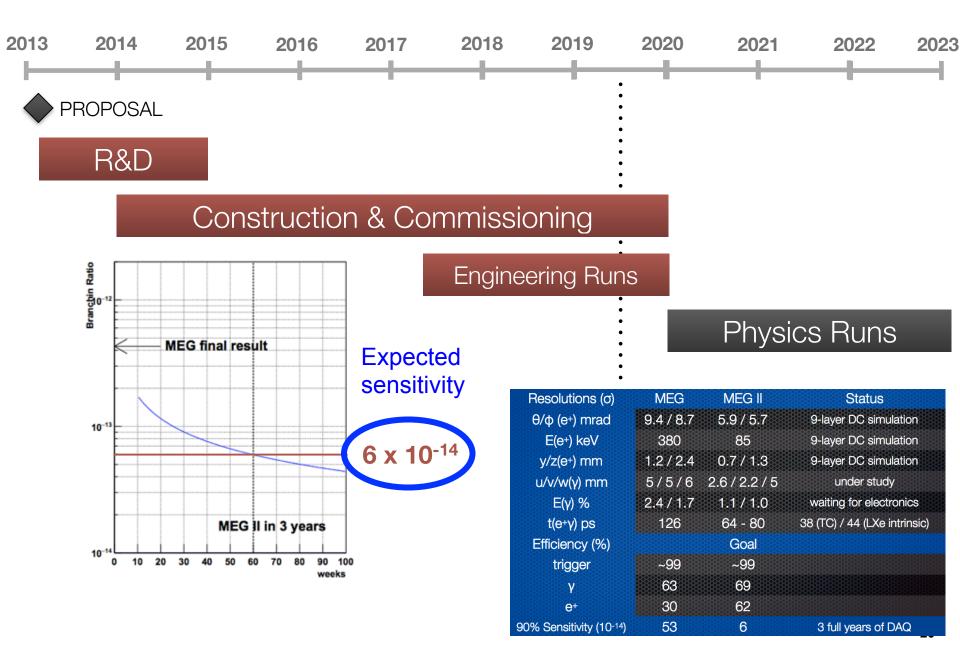

MEG-II Detector Highlights: RDC

- Radiative Decay Counter (RDC):
 new auxiliary detector for background rejection
 - ~50% of accidental background has a photon that comes from a radiative decay
 - detect positron in coincidence with a photon in calorimeter
 - improve sensitivity by ~15%
- Performances demonstrated already in 2017 run

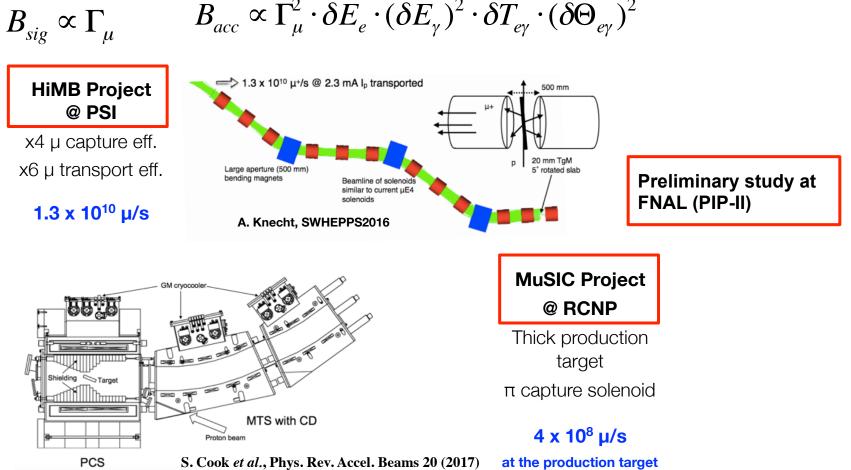



MEG-II Detector Highlights: DAQ, Trigger

- Trigger and DAQ will be integrated in a single custom system (WaveDAQ) which also provides power and amplification for SiPM and MPPC
- Preliminary versions of the boards were tested during 2017 and 2018 pre-engineering run
- Common noise problems found and fixed
- Final design and test is going to be finalized in the next few months, mass production will start immediately after



MEG-II Calibrations



MEG-II Goals and Schedule

Next Generation of $\mu \rightarrow e\gamma$ Searches ?

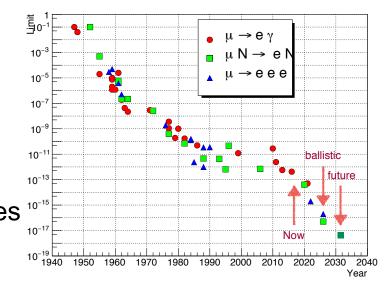
- Activities around the world to increase the muon beam rate to 10⁹-10¹⁰ muons/s
- Crucial to understand which factors will limit the sensitivity

Conclusions

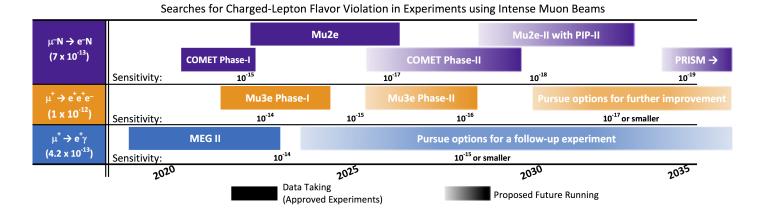
- Search of $\mu \rightarrow e\gamma$ decay continues
- LHC searches still leave lot of space for cLFV
- Best world limit from MEG experiment

BR (µ→eγ) < 4.2x 10⁻¹³ at 90% C.L.

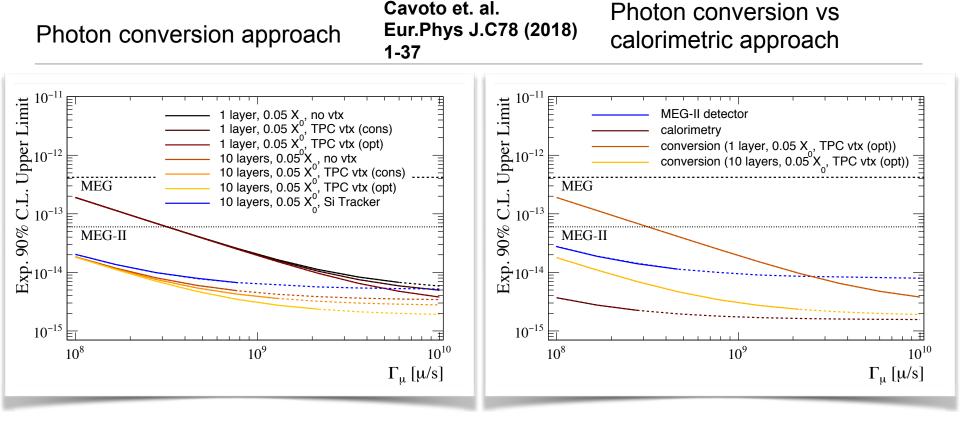
• MEG-II


=> expect a sensitivity of **6x10**⁻¹⁴ in 3 years starting from 2020

- What's next?
 - 10^9 - 10^{10} µ/s seems possible (HiMB,MuSIC..)
 - Need to think carefully a detector for a future $\mu \rightarrow e\gamma$ experiment in order not to be overwhelmed by accidental background
 - Interplay with other μ cLFV modes


Backup

Future $\mu \rightarrow e$ experiment


- Mu2e and Mu3e are structured in different phases and upgrades have been proposed
- For μ->eγ, preliminary (simulation) studies have been performed for future experiment (after MEG-II)

European strategy update @ Granada

Future $\mu \rightarrow e\gamma$ experiment

 A few 10⁻¹⁵ level seems to be within reach for 3 years running with 10⁹ muons/s with

Present CLFV limits

Reaction	Present limit	C.L.	Experiment	Year
$\mu^+ \to e^+ \gamma$	$< 4.2 \times 10^{-13}$	90%	MEG at PSI	2016
$\mu^+ \rightarrow e^+ e^- e^+$	$< 1.0 \times 10^{-12}$	90%	SINDRUM	1988
$\mu^- \mathrm{Ti} \to e^- \mathrm{Ti}^{\dagger}$	$< 6.1 \times 10^{-13}$	90%	SINDRUM II	1998
$\mu^- \mathrm{Pb} \to e^- \mathrm{Pb}^{\dagger}$	$< 4.6 \times 10^{-11}$	90%	SINDRUM II	1996
$\mu^{-}\mathrm{Au} \rightarrow e^{-}\mathrm{Au}^{\dagger}$	$< 7.0 \times 10^{-13}$	90%	SINDRUM II	2006
$\mu^{-}\mathrm{Ti} \rightarrow e^{+}\mathrm{Ca}^{*}^{\dagger}$	$< 3.6 \times 10^{-11}$	90%	SINDRUM II	1998
$\mu^+ e^- \rightarrow \mu^- e^+$	$< 8.3 \times 10^{-11}$	90%	SINDRUM	1999
$ au ightarrow e\gamma$	$< 3.3 \times 10^{-8}$	90%	BaBar	2010
$ au o \mu \gamma$	$< 4.4 \times 10^{-8}$	90%	BaBar	2010
$\tau \rightarrow eee$	$< 2.7 \times 10^{-8}$	90%	Belle	2010
$ au o \mu \mu \mu$	$< 2.1 \times 10^{-8}$	90%	Belle	2010
$ au o \pi^0 e$	$< 8.0 \times 10^{-8}$	90%	Belle	2007
$ au ightarrow \pi^0 \mu$	$< 1.1 \times 10^{-7}$	90%	BaBar	2007
$ au o ho^0 e$	$< 1.8 \times 10^{-8}$	90%	Belle	2011
$ au o ho^0 \mu$	$< 1.2 \times 10^{-8}$	90%	Belle	2011
$\pi^0 \to \mu e$	$< 3.6 \times 10^{-10}$	90%	m KTeV	2008
$K_L^0 \to \mu e$	$< 4.7 \times 10^{-12}$	90%	BNL E871	1998
$K_L^0 \to \pi^0 \mu^+ e^-$	$< 7.6 \times 10^{-11}$	90%	KTeV	2008
$K^+ \to \pi^+ \mu^+ e^-$	$< 1.3 \times 10^{-11}$	90%	BNL E865	2005
$J/\psi \to \mu e$	$< 1.5 \times 10^{-7}$	90%	BESIII	2013
$J/\psi \to \tau e$	$< 8.3 \times 10^{-6}$	90%	BESII	2004
$J/\psi \to \tau \mu$	$< 2.0 \times 10^{-6}$	90%	BESII	2004
$B^0 \to \mu e$	$< 2.8 \times 10^{-9}$	90%	LHCb	2013
$B^0 \to \tau e$	$< 2.8 \times 10^{-5}$	90%	BaBar	2008
$B^0 \to \tau \mu$	$< 2.2 \times 10^{-5}$	90%	BaBar	2008
$B \to K \mu e^{\ddagger}$	$< 3.8 \times 10^{-8}$	90%	BaBar	2006
$B \to K^* \mu e^{\ddagger}$	$< 5.1 \times 10^{-7}$	90%	BaBar	2006
$B^+ \to K^+ \tau \mu$	$< 4.8 \times 10^{-5}$	90%	BaBar	2012
$B^+ \to K^+ \tau e$	$< 3.0 \times 10^{-5}$	90%	BaBar	2012
$B_s^0 \to \mu e$	$< 1.1 \times 10^{-8}$	90%	LHCb	2013
$\Upsilon(1s)\to\tau\mu$	$< 6.0 \times 10^{-6}$	95%	CLEO	2008
$Z \to \mu e$	$< 7.5 \times 10^{-7}$	95%	LHC ATLAS	2014
$Z \to \tau e$	$<9.8\times10^{-6}$	95%	LEP OPAL	1995
$Z \to \tau \mu$	$< 1.2 \times 10^{-5}$	95%	LEP DELPHI	1997
$h ightarrow e \mu$	$< 3.5 \times 10^{-4}$	95%	LHC CMS	2016
$h ightarrow au \mu$	$< 2.5 \times 10^{-3}$	95%	LHC CMS	2017
$h \to \tau e$	$< 6.1 \times 10^{-3}$	95%	LHC CMS	2017