

Status of the SHiP experiment at CERN

Oliver Lantwin on behalf of the SHiP Collaboration.

[oliver.lantwin@cern.ch]

PASCOS 2019, Manchester

July 2, 2019

- > LHC and other experiments have not seen anything beyond the standard model + neutrino oscillations
- Yet, there remain several unsolved problems indicating the existence of particles beyond the standard model
 - > Dark matter
 - > Baryon asymmetry of the universe
 - > Origin of the neutrino masses

- > Why haven't we seen any new particles?
 - > Higher masses (→future colliders?) and/or
 - $\,\,$ > Too weakly coupled to be seen at existing experiments $\,$ \! \rightarrow \, intensity
- The beam dump facility (BDF) at the CERN SPS is a unique facility, complementing existing and future collider experiments:
 - > 400 GeV
 - $\,>\,$ 5 years of BDF @ SPS (2 \times 10 20 protons on target):
 - > 10¹⁸ charm mesons
 - > 10¹⁴ beauty mesons
 - ightarrow 10¹⁶ au leptons
- > No conflict with HL-LHC data taking
- > BDF could also host $au_{
 m FV}$ parasitically upstream of SHiP

[SPSC-SR-248, CERN-SPSC-2015-016, CERN-SPSC-2015-040, Rept.Prog.Phys. 79 (2016) no.12, 124201, JINST 14 (2019) no.03, P03025]

- > Designed for discovery and measurement of super-weakly interacting new particles
- > Decay and scattering signatures give complementary access to new physics models

> Ultra-low background environment for hidden sector decays O. Lantwin (UZH) PASCOS 2019, Manchester

Target facility and the muon shield

- > Heavy target ($12X_0$)
 - > Fully absorbs the beam
 - > Reabsorbs pions and kaons before decay
 - > Enhances production of heavy flavour through a cascade of interactions (\times 2.3 for D, \times 1.7 for B)
- Magnetised hadron absorber separates muon polarities
- > Muon shield bends muons out of experimental acceptance $10^{11} \rightarrow 25 \times 10^3$ [JINST 12 (2017) no.05, P05011]
 - Optimised using machine learning
 - Expected muon flux validated using dedicated experiment in 2018

Hidden Sector Detector

 \bigotimes

- Background tagger surrounding entire decay volume
- Decay volume under vacuum to control neutrino background
- Timing detector to reject combinatorial background
- > SplitCal can reconstruct $\gamma\gamma$ vertices with σ_{θ} of $\mathcal{O}(\mathrm{mrad})$

- $\,>\,$ 0 background events expected $\,\rightarrow$ 2 candidates needed for discovery
- > Can measure decay vertex, invariant mass, impact parameter of signal candidate
 - > mass, charge and flavour of new particles measurable
 - > redundant background rejection (+background tagger, timing,...)

Scattering and Neutrino Detector

- > 10 t of lead instrumented with emulsion and SciFi trackers
- > Can distinguish all neutrino flavours, their charge
 - ightarrow First direct observation of $ar{
 u}_{ au}$
 - > Precision neutrino physics (e.g. form factors, $u_{ au}$...)
- > Also ideal for scattering of hidden sector particles,
 - e.g. light dark matter

	$\left< E \right> / {\rm GeV}$	# CC DIS
ν_e	59	1.1×10^{6}
$ u_{\mu}$	42	2.7×10^{6}
ν_{τ}	52	3.2×10^4
$\bar{\nu}_e$	46	2.6×10^5
$\bar{\nu}_{\mu}$	36	6.0×10^5
$\bar{\nu}_{\tau}$	70	2.1×10^4

- > BDF very mature, developed by a dedicated CERN team [CERN-PBC-REPORT-2018-001]
 - > CERN Machine Development runs in summer 2018 with an instrumented target [SPS-LJ-EC-0012]
 - > Detailed engineering plans for target bunker and experimental hall
- > During comprehensive design study (2016–2019), all subdetectors underwent [spsc-sr-248]
 - > Extensive R&D, simulation studies, concretisation of engineering designs (CAD, FEA)
 - > Phase 1 prototyping
 - > Dedicated tests with and without beam
- > Phase 2 prototyping ongoing, several beam tests planned for 2019–2021, including another dedicated experiment at the SPS

Prototypes & test beams

О. Lantwin (uzн)

- > Mature software framework using Pythia6, Pythia8, Genie, Geant4
 - > Cascade production of heavy flavour implemented [CERN-SHiP-NOTE-2015-009]
 - > Validation of simulation with data from NA62 and HYPERON [SPSC-SR-248]
- Validated using 2 dedicated experiments in summer 2018 at sps
 - > Muon flux measurement with target replica accumulated 10¹¹ protons on target →
 - Charm cross-section measurement with an instrumented target (prototype for longer measurement after LS2 [SPSC-E0I-017]

Ultra-low background

Backgrounds redundantly shown to be < 1, even for partially reconstructed signal

O. Lantwin (UZH)

PASCOS 2019, Manchester

Visible decays (general remarks)

[CERN-PBC-REPORT-2018-007]

- > Selection redundantly suppresses background while maintaining high signal efficiency
- > In case of discovery, final state can be fully reconstructed (mass, charge, flavour) to identify O. Lantwin (UZIP) Articular models

Vector portal

> Production taken

into account via:

- Bremsstrahlung
- Meson decay

> QCD

 O(10²⁰) photons of sufficient energy during SHiP run

[dedicated paper in preparation]

Neutrino portal

> Showing case

$$U_e^2: U_{\mu}^2: U_{\tau}^2 = 0: 1: 0$$

- Tools and data files
 publicly available to
 calculate the sensitivity
 to arbitrary patterns of
 flavour mixing
- B_c-contribution not known; showing upper and lower limits

Dedicated paper: [JHEP 1904 (2019) 077]

Scalar portal

Mainly produced in B and $K_{\rm FCNC}$ decays due to coupling to Higgs $_{\rm PASCOS}$ 2019, ${\rm Manchester}$

O. Lantwin (uzн)

Axion-like particles

Sensitive to fermion and $\gamma\gamma$ final states due to SplitCal

PASCOS 2019, Manchester

Invisible decays

- While WIMP remains dominant paradigm, interest in light dark matter growing
- > If LDM exists, the mediator is probably light as well →
 - SHiP can look for mediator & LDM simultaneously combining searches in both detectors
- Complementary to missing energy searches for LDM:
 - different systematics
 - > less model dependent...
 - $\,\,$...but ϵ^4 vs. ϵ^2

Invisible decays

- > Produce $A'
 ightarrow \chi \chi$ (or other mediator)
- > Detect $\chi e
 ightarrow \chi e$
- Background from neutrino interactions, reducible using kinematics and additional activity around the vertex
- > In case of excess, bunched beam and time of flight can confirm light dark matter signal
- > $\chi^* \to \chi A' (\to \ell \ell)$ can leave signal in \mbox{HSD}

Conclusion

- > We don't know the scale of new physics: complementarity of searches crucial
- > SHiP designed to discover super-weakly interacting new particles:
 - > High intensity beam dump facility gives access to couplings $\mathcal{O}(10^{-10})$ for masses up to $\mathcal{O}(10 \, {\rm GeV})$
 - > Redundant background rejection for ultra-low background environment
 - > Full reconstruction of final state
 - > Complementary decay and scattering signatures
- > Strong collaboration: 290 authors, 53 Institutes, 18 countries
- Completed Comprehensive design study including detailed sensitivity studies, good progress towards TDR [spsc-sr-248]

Accelerator schedule	2015		201	6		2017		20	018		2019)		2020		2021		20	22		2023		2024		202	5		2026		2027
LHC	Run 2								LS2					Run 3					LS3							R	lun 4			
SPS																								SPS stop NA stop						
SHIP / BDF			Co	mpi	rehe	ensive	des	sign	& 1st	pro	totypir	g	1	Desigi	n an	d proto	typin	ng		F	roductio	n /	Cons	truc	tion I	Ins	stalla	tion		
Milestones	TP										C	DS	ESF	ЪЬ			TDF	2	PRR										Cw	8///