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Another 750 GeV?
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or something real? Should you write a paper about it? Announce a press
conference? Start writing your Nobel prize speech?
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Interpretations



Frequentist: what is probability?

Probabilities are not degrees of certainty or belief.

Probabilities are frequencies at which events occur in identical repeat
experiments.
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Frequentist: what can we do?

We cannot quantify our uncertainty about the resonance.

We can attempt to control the frequency at which we would make a
type-1 error.

Type-1 error: Reject null hypothesis when it is true.

We must specify a null hypothesis, Hy, and a desired type-1 error rate, a.
We reject Hy at a pre-chosen significance a or we do not.

The rate a (implicitly) chosen to be about 107 (5¢) in particle physics.
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Frequentist: how do we do it? i

We construct a test-statistic that measures discrepancies between data
and the null hypothesis, e.g. the log-likelihood ratio,

maxg, P (D|M;,0,)
maxg, P (D| Moy, 0>)

g=-2In

This involves numerical optimisation of the likelihood function.

We calculate the p-value.

p-value: probability of obtaining a test-statistic at least as extreme as
the one we saw, if the null hypothesis was true.
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Frequentist: how do we do it? ii

The observed p-value is not a continuous measure of our confidence in
Hy. The p-value was a means to controlling the type-1 error rate.

It is common nevertheless to interpret p as a measure of our
confidence in Hy.
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Frequentist: global or local?

If the data had been different, we would have constructed a resonance
model with a different mass to match the different data.

We would have looked elsewhere.

Global p-values account for this look-elsewhere effect.

We calculated global p-values with Gross-Vitells [1] and Monte-Carlo
simulations.
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Bayesian: what is probability?

Probabilities are degrees of belief about any proposition.

’

There is a unique rule for updating them in light of information — Bayes

theorem.

P(B|A)P(A)

P(A|B) = P®B)

Bayesian statistics < probability theory
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Bayesian: what can we do?

We can simply update our belief in the signal + background model
relative to the background only model.

The factor that updates our belief is a

Relative belief after data

Bayes factor = ; -
Relative belief before data

_P(DIMy)
P (DI M)
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Bayesian: how do we do it?

The numerator and denominator are so-called Bayesian evidences. For a
model with parameters 6,

P(D|M)=fP(D|M,0)p(9|M)d0

To compare with the p-value, we calculate the posterior of the
background model, assuming equal prior odds,

1
P(My|D) =——
(Mo | D) 1+ B

This is the
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Likelihood function

A component of Bayesian and frequentist analysis. The probability of
obtaining data given a particular model and parameters.

Our data is binned. The likelihood is a product of Poissons, one for

each bin. ,
e—ﬂ.i/’LiOl

P(DIM,0) =[] —

i Ol'

)

where the expected number of events depends on the model
parameters, A = A1(0).
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Results from toy Higgs search



From quantum mechanics, we learned an antidote to disputes about
interpretations.

Shut up and calculate.
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Toy pr

To make calculations, let's pick a toy problem to study. The search for
the Higgs in the diphoton channel by ATLAS with 25/fb [2].

An important search for the discovery of the Higgs.
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Background model

There is a monotonically falling background.

We could describe it by a basis of polynomials (e.g. Bernstein) but so
that we can perform many calculations, we just use a fixed background

and neglect parametric uncertainties in it.

Background shape completely fixed

Counts

Invariant mass
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Signal model i

We model the signal predicted by a Higgs as a Gaussian centred at m1y,.
The width was the experimental resolution of about 1.5GeV.

We specified the strength relative to the Standard Model prediction (at

125GeV),
efficiency x cross section

=1

efficiency x cross section)sy @ 125Gev

This is an approximation as we did not model dependence of efficiency
or cross section as functions of Higgs mass.
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Signal model ii

There were thus two unknown parameters describing the location and

strength of the resonance, my, and p.

Background shape completely fixed

Counts

Vary signal strength, i

Vary Higgs mass, m»

Invariant mass
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For our Bayesian calculations, we must place priors on my, and p. We

experiment with several choices.

Prior density, p(my,) (arb. units)

T T T T T T T
100 110 120 130 140 150 160
Higgs mass, my, (GeV)

Broad priors (log and flat) and narrow ones representing specific prior

knowledge.
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For our Bayesian calculations, we must place priors on my, and p. We
experiment with several choices.

e

Log— double breadth
== Log—halfbreadth

' zﬁ‘lﬁd
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Prior density, p (log,o ) (arb. units)

-2 0 2
Logarithm of signal strength, log, i

We vary the breadth of the log prior for the signal strength, and the

shape of the prior.
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Data and pseudo-data

We use the real 25/fb collected by ATLAS [2].

We sample our own pseudo-data from the background model and the
signal + background model with i =1, myj, = 125GeV.
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The models tell us the expected number of counts in each bin for a
particular integrated luminosity.

We sample pseudo-data at many integrated luminosities by drawing

counts from Poisson distributions in each bin.

Counts

Invariant mass Invariant mass
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Evolution of p-value and posterior as we collect data

0.0 *
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The posterior slowly approaches 1 when the background model is correct
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Evolution of p-value and posterior as we collect data
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and zero when the signal model is correct, though in this case there is an
extremely mild preference for the background model until about 10/fb.
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Evolution of p-value and posterior as we collect data

o

Global p-value
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The p-value makes a random walk between o and 1 when the

background model is correct
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Evolution of p-value and posterior as we collect data

Global p-value
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Integrated luminosity/fb

and when the signal model is correct, it makes a (noisy) walk towards

zZero.
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Evolution of p-value and posterior as we collect data

of background only

Posterior

Global p-value
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Bayesian (top)/frequentist (bottom). Background model true (left)/signal
model true (right).
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Comparison between p-value and posterior

We performed about a million pseudo-experiments.

10°

*  Observed by ATLAS

#  Posterior generated from background only
104 ®  Posterior generated from background + signal

Posterior / global p-value
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The posterior of the background model about 10% - 103 times greater
than global p-value!
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The Bayes effect

The magnitude of the effect greater than the well-known look-elsewhere
effect.

40

#  Look-elsewhere effect
% Bayeseffect

Reduction in significance
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Global significances reduced by 1 - 20.
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Prior dependence

We checked many priors. The effect could be reduced but remained
important.

Minimum Bayes effect across vague priors

T T T
-lo 00 lo 20 30 40 50
Global significance

See paper [3] for full discussion about prior dependence of this effect.
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Conclusions



. First detailed comparison of Bayesian and frequentist methods in
resonance searches

. Posterior ultimately converged to 0 or 1; p-value makes random
walk if Hy correct

. p-values overstate evidence against the null! p-value << posterior
of background model

. Checked that the effect was robust with respect to several choices
of prior

. When looking at an anomaly, we must remember the
look-elsewhere effect and the Bayes effect
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