

Based on arXiv: 1811, 04664 [hep-th]

W/ Masahiro Ibe, Tsutomu T. Yanagida (ICRR) (IPMU -> TD Lee Inst, Tokyo) (Tokyo Shanghai)

... and many earlier papers

$\bigwedge > 0$

 $\Lambda^4 \simeq O(10^{-120}) M_{pe}^4$

 $\ll M_{pe} \parallel$

$$\Lambda^4 \simeq \mathcal{O}(10^{-120}) M_{PI} \ll M_{PI}^4$$

while dork energy is IR phenomenon it is portly about UV QG, string,...

de Sitter Swampland Cokjecture [Obied-Ooguri-Spodyneiko-Vafa (18)] Mp1 || [V|] 2 c V (C~O(1), (>0) excludes dS vacua (V=0, V>0) ~> motivates quintessence [Agrawal-Objed-Steinhordt-Vafa (18)] de Sitter Swampland Cokjecture [Obied-Doguri-Spodyneiko-Vafa (18)] Mp1 || [V|] ≥ c V (C~O(1), C>0) excludes dS vacua (V=0, V>0) ~> motivates quintessence [Agrawal-Objed-Steinhordt-Vafa (18)]

(This talk does not directly vely on this conjecture)

Q: if guintessence, why flat potential? V(¢)↑

shift symmetry

$$a \rightarrow a + (const.)$$

broken by non-pert. effect
 $V(a) = \Lambda^{4} \cos\left(\frac{a}{fa}\right) + \cdots$
 $\prod_{\mu=2\pi/d}^{\mu=2\pi/d} \ll M_{pl}^{4} / (d = \frac{g^{2}}{4\pi})$

shift symmetry

$$a \rightarrow a + (const.)$$

broken by non-pert. effect
 $V(a) = \Lambda^4 cos(\frac{a}{fa}) + \cdots$
 $\prod_{\mu=2\pi/a}^{\mu=2\pi/a} \ll M_{pe}^4 / (a = \frac{g^2}{4\pi})$

•

Surprisingly, electroweak SU(2) gauge group
in the standard model does the job
$$11$$

 RG
 $\chi_2(Mz) \simeq \frac{1}{29} \longrightarrow \chi_2(Mpl) \simeq \frac{1}{48}$

Surprisingly, electroweak SU(2) gauge group in the standard model does the job !! $\begin{array}{c} \text{RG} \\ \text{Cl}(M_z) \simeq \frac{1}{29} \xrightarrow{1}{29} \text{Cl}(M_{\text{pl}}) \simeq \frac{1}{48} \end{array}$ $\Lambda^{+} \simeq M_{pe} \mathcal{O}^{-\frac{2\pi}{d_2(M_{pe})}} \simeq \mathcal{O}(10^{-130}) M_{pe} I$ (Xi dominant contribution comes (from small-size instanton) electroweak quintessence axion scenorio [Fukugita-Yanagida (194) Nomura-Watari-Yanagida (100), McLerran-Pisorski-Skokov (12), ...]

Q: Isn't the EW
$$\theta$$
-ongle unphysical?
(θ con be rotated away by anomalies of)
($B+L$) - global symmetry [cf. Anselm-Johansen (92)]

Weak Gravity Conjecture.

* Weak grovity anjecture implies
[Arkoni-Hamed-Moth-Nicolis-Vafa (06)]
[See also Bonks-Dine-Fox-Gorbatov (03)]

$$f \leq \frac{Mpl}{Sinst} \sim O(10^{-2})Mpl \ll Mpl$$

 $\int Sinst = \frac{2\pi}{d_2(Mpl)} \approx 300$

* Weak grovity anjecture implies
[Arkoni-Hamed-Moth-Nicolis-Vafa (66)]
[See also Bonks-Dine-Fox-Gorbatov (63)]

$$f \leq \frac{Mp_1}{Sinst} \sim O(10^{-2})Mp_{\ell} \ll Mp_{\ell}$$

 $\int Sinst = \frac{2\pi}{d_2(Mp_{\ell})} \cong 300$

* However, we need small quintessence mass

$$m^2 \sim \frac{\Lambda^4}{f^2} \sim \frac{H_0^2 M_p^2}{f^2} \leq H_0^2$$

 $\sim f \geq M_{Pl}$ needed (f)

Hilltop Quintessence ?

[Putta - Scherrer (108) .--]

Choose Sa= a-fit Kfit to avoid too much rolling

However, this requires Sinst O(exp(Mpl/f))~O(e¹⁰⁰) fine-tuning [see e.g. Choi (99), Svrcek (106), Ibe-Yanagida-MY (18)]

We con amelievote the fine-tuning by modifying RG flow by heavy porticles RG $\mathcal{A}_2(M_Z) \simeq \frac{1}{29} \longrightarrow \mathcal{A}_2(M_{pl})$ $\frac{1}{48}$ Sinst $\sim \frac{2^{\prime\prime}}{\mathcal{A}_2(M_{\rm pg})} \sim 300$

We con amelievote the fine-tuning by modifying RG flow by heavy porticles RG $\mathcal{A}_2(M_Z) \simeq \frac{1}{29} \longrightarrow$ $\mathcal{A}_{2}(M_{\mathbb{Z}})\sim\mathcal{O}(1)$ Wheavy Sinst~O(10) porticles

We can amelievote the fine-tuning by modifying RG flow by heavy porticles RG $\Delta_2(M_Z) \simeq \frac{1}{29} \longrightarrow Sinst \simeq O(10)$ or even w/ heavy 0(1) porticies But ... this spoils the successful estimate for A $\Lambda^4 \sim M_{pl}^4 Q^{-Sinst} \sim O(10^{-120}) M_{pl}^4$

Supersymmetric Miracle

Consider MSSM w/ msusy ~ O(TeV)

EW Q-ongle

Consider MSSM w/ MSUSY ~ O(TeV)

en (BHL)-breaking dim 5 op. QQQL EW Q-ongle dangerous for proton de cay [Sakai-Yanagida, Weinberg (82)]

Consider MSSM w/ msusy ~ O(TeV) en (B+L) - breaking dim 5 op. QQQL EW Q-ongle dangerous for proton de cay \$\overline{\second{s}} [Sakai-Yanagida, Weinberg (80)] $U(1) \neq V$ (10, +2, (102 + 1)impose Frogatt-Nielsen sym. 1030 with breaking parameter ' 51 1 1 5 * 0 (· 53* 0 (0 for quork/lepton mixing matrix (Hy Ъ, (Ha

$$d_2(M_{PR}) = \frac{1}{23} cf. d_2(M_{PR}) = \frac{1}{48}$$

$$\Lambda^{4} \simeq e^{-\frac{2\pi}{\sigma_{2}(M_{pe})}}$$

$$\begin{aligned} d_{2}(M_{PE}) \Big|_{MSSM} &= \frac{1}{23} \quad ef. \quad d_{2}(M_{PE}) \Big|_{SM} = \frac{1}{48} \\ \text{instanton calculus gives [Nomura-Watari-Yanagida ('oo)]} \\ &\Lambda^{4} &= e^{-\frac{2\pi}{d_{2}(M_{PE})}} e^{10} \quad M_{SUST}^{3} M_{PE} \\ &\stackrel{\sim}{=} O(10^{-120}) M_{PE}^{4} \, II \\ &e & 1/7 , \quad MSUST &= TeV \end{aligned}$$

Now, back to inclusion of heavy porticles

Include a pair X, X of heavy particles with intermediate mass MX

6 Pynkin index

 $\alpha_{2}^{-1}(M_{\text{Pl}})\Big|_{\chi\bar{\chi}} = \alpha_{2}^{-1}(M_{\text{Pl}}) + \frac{2T_{\text{R}}}{2\pi}\int_{\mathcal{I}} \int_{\mathcal{I}} \frac{M_{\chi}}{M_{\text{Pl}}}$

Include a pair X, X of heavy particles with intermediate mass MX 6 Pynkih index $\alpha_{2}^{-1}(M_{PI})\Big|_{\chi\bar{\chi}} = \alpha_{2}^{-1}(M_{P\ell}) + \frac{2T_{R}}{2\pi}\int_{\mathcal{T}} \int_{\mathcal{T}} \frac{M_{\chi}}{M_{P\ell}}$

Meany particles also generate extra zero modes Insertion of operators Mx XX

$$\sim \left(\frac{M_x}{M_{PI}} \right)^{2T_R}$$

It turns out 2 effects concel out!

$$[Nomura-Watori-Yanagida (oo)]$$

 $\Lambda^{4}|_{X\bar{X}} \simeq e^{-\frac{2\pi}{Q_{2}}(M_{Pe})|_{X\bar{X}}} \frac{(M_{X})^{2}T_{R}}{(M_{Pe})^{2}T_{R}} e^{-0} m_{SUSY} M_{Pl}$
 $e^{-\frac{2\pi}{Q_{2}}(M_{Pe})|_{X\bar{X}}} \frac{(M_{Pe})^{2}T_{R}}{(M_{Pe})^{2}T_{R}} e^{-0} concel$
 $e^{-\frac{2\pi}{Q_{2}}(M_{Pe})} \frac{(M_{Pe})^{2}T_{R}}{(M_{X})^{2}} \frac{(M_{Pe})^{2}T_{R}}{(M_{Pe})^{2}} \frac{(M_{Pe})^{2}T_{R}}{(M_{P$

We have many choices for heavy porticles
s.t.
$$d_2(M_{PR}) \simeq 4\pi$$

(1) 3 $SU(2)$ triplets
 $a + O(10^7 \text{ GeV})$
(2) 1 $SU(2)$ triplet
1 $SU(3)$ octet
 $a + O(10^7 \text{ GeV})$
 $a + O(10^7 \text{ GeV})$

More Swampland Conjectures

de Sitter Conjecture

$$X' V(a) \sim \Lambda^{4} cos(\frac{a}{f})$$
 has local maximum,
hence violates original dS conjecture
 $M_{Pe} \|\nabla V\| \geq c V$
 $\int M_{Pe} x_{anagida} = M\chi^{(18)}$

Murayama - Yanagida - MY (18) See also Denef - Hebecker-Wrase, Conlon, Choi - Chway-Sin (18)

$$X' V(a) \sim \Lambda^{4} cos(\frac{a}{f})$$
 has local moximum,
hence violates original dS conjecture
 $M_{Pe} \|\nabla V\| \geq c V$

However, consistent
$$v/refined dS$$
 conjecture
 $M_{PI} ||\nabla V|| \ge c V$ or $M_{PJ}^2 \min(\tau^2 V) \ge c' V$

[Garg-Krishnan, Murayama-Yanagida-MY, Ooguri-Palti-Shiu-Vafa, (18)] See also Fukuda-Saito-Shirai-MY (18)

Scalar WGC,

* Some versions of weak gravity conjecture with scalor fields claim [Palti (17), Shirai-MY (19)] "Fscolor ≥ Fgravity"

No NON-SUST AdS

electroweak quintessence axion

 $\Lambda^{\dagger} \simeq M_{pe^{2}} C^{-\frac{2\pi}{\mathcal{O}_{2}(M_{pe})}} \simeq \mathcal{O}(10^{-130}) M_{pe}^{\dagger} I$

* Electroweak Quintessence Axion: simple scenario to explain $\Lambda^4 \simeq 10^{-120} M_{Pl}^4$

* Consistent w/ de Sitter swampland conjecture

* However, fine-tuning ameliorated in MSSM + heavy matter (SUSY minacle' A robust

