Measuring the Anomalous Magnetic Moment of the Muon

Joseph Price, University of Liverpool On Behalf of the Muon g-2 Collaboration PASCOS, Manchester UK July 3rd, 2019

Outline

- Introducing the anomaly
- Standard Model contributions
- Theoretical status and prospects
- Fermilab Muon g-2 experiment
 - Measurement principle
 - Analysis methods
 - Current status and prospects
- Conclusions

Muon Magnetic Moment

gyromagnetic ratio g:

Magnetic moment (spin) interacts with external B-fields

• Makes spin precess at frequency determined by g

Joe Price I Measuring the Anomalous Magnetic Moment of the Muon 3/07/19

The muon has an intrinsic magnetic moment that is coupled to its spin via the

Magnetic Moment & Virtual Loops

• For a pure Dirac spin-1/2 charged fermion, g is exactly 2

μ

Joe Price | Measuring the Anomalous Magnetic Moment of the Muon 3/07/19

μ

Interactions between the muon and virtual loops change the value - X & Y

Standard Model Uncertainties

aSM

$$a_{\mu} = \frac{g_{\mu} - 2}{2}$$

- The SM value of a_{μ} is dominated by QED
- But its uncertainty is dominated by Hadronic contributions

Joe Price | Measuring the Anomalous Magnetic Moment of the Muon 3/07/19

Split into Hadronic Vacuum Polarisation (HVP) & Hadronic Light by Light (HLbL)

Contribution	Value (x 10 ⁻¹¹)	Reference
QED	116 584 718.95 ± 0.08	PRL 109 111808 (2012)
EW	153.6 ± 1.0	PRD 88 053005 (2013)

12 3/07/19 Joe Price I Measuring the Anomalous Magnetic Moment of the Muon

Contribution	Value (x 10 ⁻¹¹)	Ref
QED	116 584 718.95 ± 0.08	PRL 109
EW	153.6 ± 1.0	PRD 88 C
HVP (LO)	6931 ± 34	EPJ C 7
HVP (LO)	6933 ± 25	PRD 97 1

HVP (LO): Lowest-Order Hadronic Vacuum Polarization

- Critical input from e⁺e⁻ colliders (data from SND, CMD3, BaBar, KLOE, Belle, BESIII), $\delta a_{\mu}^{\mu\nu\rho} \sim 0.5\%$; extensive physics program in place to reduce $\delta a_{\mu}^{\mu}V^{\mu}$ to ~ 0.3% in coming years
- **Progress on the lattice**: Calculations at physical π mass; goal: $\delta a_{\mu}^{\mu\nu\rho} \sim 1 - 2\%$ in a few years (cross-check with e⁺e⁻ data)

Contribution	Value (x 10 ⁻¹¹)	Reference
QED	116 584 718.95 ± 0.08	PRL 109 111808 (2012)
EW	153.6 ± 1.0	PRD 88 053005 (2013)
HVP (LO)	6931 ± 34	EPJ C 77 827 (2017)
HVP (LO)	6933 ± 25	PRD 97 114025 (2018)
HVP (NLO)	-98.7 ± 0.7	EPJ C 77 827 (2017)
HVP (NLO)	-98.2 ± 0.4	PRD 97 114025 (2018)
HVP (NNLO)	12.4 ± 0.1	PLB 734 144 (2014)

HVP (LO): Lowest-Order Hadronic Vacuum Polarization

- **Critical input** from e^+e^- colliders (data from SND, CMD3, BaBar, KLOE, Belle, BESIII), $\delta a_{\mu}^{HVP} \sim 0.5\%$; extensive physics program in place to reduce δa_{μ}^{HVP} to ~ 0.3% in coming years
- Progress on the lattice: Calculations at physical π mass; goal: $\delta a_{\mu}^{\mu\nu\rho} \sim 1-2\%$ in a few years (cross-check with e+e- data)

New *ab initio* approaches [PRD **98** 094503 (2018)] finding consistent result of (-93 \pm 13) x 10⁻¹¹ – lattice making big strides

r. J)	6933 ± 25	PRD 97 1
HVP (NLO)	-98.7 ± 0.7	EPJ C 7
HVP (NLO)	-98.2 ± 0.4	PRD 97 1
HVP (NNLO)	12.4 ± 0.1	PLB 734

HVP (LO): Lowest-Order Hadronic Vacuum Polarization

- Critical input from e⁺e⁻ colliders (data from SND, CMD3, BaBar, KLOE, Belle, BESIII), $\delta a_{\mu}^{\mu\nu\rho} \sim 0.5\%$; extensive physics program in place to reduce $\delta a_{\mu}^{\mu}V^{\mu}$ to ~ 0.3% in coming years
- **Progress on the lattice**: Calculations at physical π mass; goal: $\delta a_{\mu}^{\mu\nu\rho} \sim 1 - 2\%$ in a few years (cross-check with e⁺e⁻ data)

New *ab initio* approaches [PRD **98** 094503 (2018)] finding consistent result of (-93 \pm 13) x 10⁻¹¹ – lattice making big strides

F. J)	6933 ± 25	PRD 97 1
HVP (NLO)	-98.7 ± 0.7	EPJ C 7
HVP (NLO)	-98.2 ± 0.4	PRD 97 1
HVP (NNLO)	12.4 ± 0.1	PLB 734
HLbL (LO + NLO)	101 ± 26	PLB 73 EPJ Web Cor
Total SM	116 591 818 ± 43 (368 ppb)	
	116 591 821 ± 36 (309 ppb	

$a_{\mu}^{\text{had;LO}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{m_{\pi}^2}^{\infty} \frac{ds}{s^2} K(s) R(s)$ $R \equiv \frac{\sigma_{\text{tot}}(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$ HVP (LO): Lowest-Order Hadronic Vacuum Polarization BaBar, KLOE, Belle, BESIII), $\delta a_{\mu}^{\mu\nu\rho} \sim 0.5\%$; extensive physics program in place to reduce $\delta a_{\mu}^{\mu}V^{\mu}$ to ~ 0.3% in coming years $\sim h$ **Progress on the lattice**: Calculations at physical π mass; goal: eμ /mm @m $\delta a_{\mu}^{\mu\nu\rho} \sim 1 - 2\%$ in a few years (cross-check with e⁺e⁻ data) $\sim \sim \sim$

- Critical input from e⁺e⁻ colliders (data from SND, CMD3,

HLbL: Hadronic Light-by-Light

- Model dependent: based on xPT + short-distance constraints (operator product expansion)
- Difficult to relate to data like HVP (LO); γ^* physics, π^0 data (BESIII, KLOE) important for constraining models
- **Theory Progress:** New dispersive calculation approach; extend the lattice (finite volume, disconnected diagrams); Blum et al. making excellent progress

New *ab initio* approaches [PRD **98** 094503 (2018)] finding consistent result of (-93 \pm 13) x 10⁻¹¹ lattice making big strides

ь. J)	6933 ± 25	PRD 97 1	
HVP (NLO)	-98.7 ± 0.7	EPJ C 7	
HVP (NLO)	-98.2 ± 0.4	PRD 97 1	
HVP (NNLO)	12.4 ± 0.1	PLB 734	
	101 ± 26	PLB 73 EPJ Web Cor	
Builds confidence in HLbL term91 818 ± 43 91 821 ± 36Recent data-dr (2018)] for $a_{\mu}^{\pi^0-}$ HVP (LO): Lowest-Order Hadro 			
 Progress on the lattic δa_μ^{HVP} ~ 1 – 2% in a fer 	ce: Calculations at physic w years (cross-check with	al π mass; go ι e+e- data)	

Current status

- New combination (KNT18) has not moved central value significantly, reduced uncertainties
- > 3.5σ discrepancy persists
- Theory groups are making progress to achieve competitive uncertainties on same time scale as new FNAL experiment...

PRD 97 114025 (2018)

Muon g-2: 33 Institutions, 7 countries, 203 Members

Why Fermilab?

- BNL limited by statistics (540 ppb on 9 x 10^9 detected e^+)
- E989 goal: Factor of 21 more statistics $(2 \times 10^{11} \text{ detected } e^+)$

Fermilab advantages

- Long beam line to collect $\pi^+ \rightarrow \mu^+$
- Much reduced amount of p, π in ring
- 4x higher fill frequency than BNL

- magnetic storage ring
- precession and cyclotron frequencies

• If
$$g = 2, \omega_a = 0$$

•
$$g \neq 2, \omega_a \approx (e/m_\mu)a_\mu B$$

Real World Considerations

- Muon beam has a small vertical component

$$\vec{\omega}_a = \frac{e}{mc} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2} - \frac{1}{\gamma^2} \right) \right]$$

- This introduces an unwanted $\beta x E$ term...
- ... unless $\gamma = 29.3$, then E-field term vanishes: we call this the "magic" momentum (3.094 GeV)
- Leaves 2 effects that we can't ignore:
 - Not all muons are exactly at magic momentum
 - Some small degree of vertical motion of muons (reduces effective B-field)
- for these (< 1 ppm)

We need to use Electric fields to focus the beam so we can store the muons $\frac{1}{-1} \left| \vec{\beta} \times \vec{E} - a_{\mu} \left(\frac{\gamma}{\gamma + 1} \right) \left(\vec{\beta} \cdot \vec{B} \right) \vec{\beta} \right|$

We use tracker and beam dynamics models to calculate the small corrections

Measuring the muon spin...

 e⁺ preferentially emitted in direction of muon spin $s_{
u_e}$ μ^+

 p_{ν_e}

Joe Price | Measuring the Anomalous Magnetic Moment of the Muon 3/07/19

 Asymmetry is larger for high momentum e+ Optimal cut at E~1.8 GeV

 s_{e^+}

Measurement Principle

- Three ingredients to measure $a_{\mu} \sim (\omega_a / \tilde{\omega}_p)$
 - ω_a : Arrival time spectrum of high energy positrons
 - ω_p : Magnetic field in storage region measured by proton NMR
 - $\tilde{\omega}_{\rm p}$: Muon distribution to get weighted magnetic field frequency

Joe Price I Measuring the Anomalous Magnetic Moment of the Muon 3/07/19 27

- Monitor beam profile before entrance with scintillating X and Y fibres
- Get time profile of beam using scintillating pad Pulse
- ~125ns wide

Cancel B-field during injection using Inflector, so muons can get into the ring

Joe Price I Measuring the Anomalous Magnetic Moment of the Muon 3/07/19 28

Kicker magnets

- After inflector, muons enter storage region at r = 77 mm outside central closed orbit
- Deliver pulse in < 149 ns to muon beam
- Steer muons onto stored orbit

Joe Price | Measuring the Anomalous Magnetic Moment of the Muon 3/07/19 29

Electrostatic quadrupoles

- Drive the muons towards the central part of storage region vertically
- Minimizes beam "breathing", improves muon orbit stability
- Aluminum electrodes cover ~43% of total circumference

Joe Price I Measuring the Anomalous Magnetic Moment of the Muon 3/07/19 30

24 segmented PbF₂ crystal calorimeters

- Each crystal array of 6 x 9 PbF₂ crystals $-2.5 \times 2.5 \text{ cm}^2 \times 14 \text{ cm} (15 X_0)$
- Readout by SiPMs to 800 MHz WFDs (1296 channels in total)

Monitoring and Mapping the Magnetic Field

Fixed probes on vacuum chambers

• Measure field while muons are in ring – 378 probes **outside** storage region

Trolley probes calibrated to free-proton Larmor frequency

- Calibrate trolley probes using a special probe that uses a water sample
- Measurements in specially-shimmed region of ring

Joe Price | Measuring the Anomalous Magnetic Moment of the Muon 3/07/19 32

Trolley matrix of 17 NMR probes

• Measure field in storage region during **specialized** runs when muons are not being stored

Run 1 Overview

- Data taking period: April—July 2018
- Accumulated ~ 1.4 x BNL statistics (after data quality cuts) — $\delta \omega_a$ (stat) ~ 350 ppb
- Field uniformity ~ 2x better than BNL

Systematic Uncertainty Comparison: E821 and E989

$= \frac{\omega_a}{\tilde{\omega}_p} \frac{\mu_p}{m_e} \frac{m_\mu}{m_e} \frac{g_e}{2}$

- New hardware (calorimeters, trackers, NMR)
- Improved analysis techniques
- Reduce uncertainties by at least a factor of

ωa Goal: Factor of 3 Improvement			
Category	E821 (ppb)	E989 Goal (ppb	
Gain Changes	120	20	
Lost Muons	90	20	
Pileup	80	40	
Horizontal CBO	70	< 30	
E-field/pitch	110	30	
Quadrature Sum	214	70	

R)	ω_p Goal: Factor of 2.5 Improvement		
	Category	E821 (ppb)	E989 Goal (ppb
	Field Calibration	50	35
2.5	Trolley Measurements	50	30
	Fixed Probe Interpolation	70	30
	Muon Convolution	30	10
	Time-Dependent Fields	_	5
	Others	100	50
	Quadrature Sum	170	70

Run-1 Analysis Status – ω_a

Run 1 Analysis Status: ω_a

• Account for a number of effects that can affect the extraction of ω_a

Detector effects

$N(t) = N_0 e^{-t/\tau} \left[1 - A \cos\left(\omega_a t + \phi\right)\right]$

Run 1 Analysis Status: ω_a

• Account for a number of effects that can affect the extraction of ω_a

Beam dynamics

- Muons can leave storage ring by decaying or escaping
- Exhibit specific signature in multiple calorimeters
- Amplitude N₀ scaled by:

$$\Lambda(t) = 1 - K_{\text{loss}} \int_0^t e^{t'/\tau} L(t') dt'$$

$N(t) = N_0 e^{-t/\tau} [1 - A \cos(\omega_a t + \phi)]$

Coherent betatron oscillations (CBO)

Amplitude N₀ scaled by:

$$C(t) = 1 - e^{-t/\tau_{\rm CBO}} A_1 \cos\left(\omega_{\rm CBO} t + \phi_1\right)$$

Run 1 Analysis Status: ω_p – Field Calibration

- In the experiment, need to extract ω_p ; however, don't have free protons
 - Need a calibration
- Field at the proton differs from the applied field

$$\omega_p^{\text{meas}} = \omega_p^{\text{free}} \left[1 - \sigma \left(\text{H}_2 \text{O}, T \right) \right]$$
Protons in H₂O molecules,
diamagnetism of electrons screens
protons => local B changes
• Known to 2.5 ppb

Goal: Determine total correction to \leq 35 ppb accuracy

These are static corrections; need to worry about dynamic ones too (radiation damping, RF coil inhomogeneity, time dependence of gradients, ...)

Joe Price | Measuring the Anomalous Magnetic Moment of the Muon 3/07/19

^ω_p **† B**

 μ_{proton}

Run 1 Analysis Status: ω_p – Field Calibration

Plunging Probe

- Achieved small perturbation of plunging **probe** ~ (-5.0 ± 6.5) ppb
- Quantified uncertainties on plunging probe material, dynamic effects — under budget of **35 ppb**

Trolley Calibration

- Calibration of trolley probes under control
- Factor of ≥ 2 improvement on uncertainties for nearly all probes compared to E821
- Uncertainty is ~ 26 ppb on average per probe under budget of **30 ppb**

Plunging Probe Uncertainties		
Effect	Liner inty (pp	
Probe Perturbation to Field (includes integes)	6.5	
Radiation Dampin	20	
Proto Vipolar Field	2	
Oxygen Contamination of Water Sample	< 1	
TOTAL	21	

Blinded Trolley Calibration Coefficients

Run-1 Analysis Status — ῶ_ρ

Position of the beam

- Use Trackers to measure the beam
- Extrapolate tracks back through Bfield to point of radial Tangency
- Observe beam moving in time
- Use Trolley-Fixed probe interpolation to tell us the field at these positions

Run 1 Analysis Status: $\tilde{\omega}_p$ – Field Interpolation

- Need to determine ω_p at all times while storing muons
- Interpolate between trolley maps using fixed probe data
- Tracking algorithms showing good agreement with trolley runs
- Also tracking higher-order multipole moments important for extracting $\tilde{\omega}_{p}$

trolley runs

- be similar to run 1

250-ppb contours

Summary

Theoretical calculations

- Highly sensitive test of the SM with discrepancy between theory and experiment at the 3.7σ level
- Improvements in Lattice techniques becoming competitive for HVP uncertainty
- New data for HVP improving uncertainty, and not moving central value
- Data driven methods for HLbL agree with theory, too soon for competitive uncertainties
- On course for improvement on same time scale as Fermilab result **The Fermilab Muon g-2 Experiment**
- Completed Run 1 in July 2018: result planned for late 2019. Statistic ~1.5 x BNL
- Run 2 nearly complete (this Saturday!) another 2 x BNL this year
- Taking 5% of a BNL a day, on course for 21 BNLs over next 2 years
- No new systematic uncertainties unearthed, all at or below target level for run 1
- Aiming for $>5\sigma$ result (if central value remains the same as BNL) at end of year

Hadronic Vacuum Polarization

- **BESIII:** 3x more data available, luminosity measurement improvements
- **CMD3:** Will measure up to 2 GeV (energy scan, ISR good cross check)

Physics Beyond the Standard Model?

SUSY, TeV-Scale Models

• Higgs measured at the LHC to be ~125 GeV 400 • Theory: Higgs should acquire much heavier mass from 300 loops with heavy SM particles (e.g., top quark) [10⁻¹¹] • Supersymmetry: new class of particles that enters such loops and cancels this contribution ບ_ ບ_ 100 -100200 Complementary to direct searches at the LHC • Sensitivity to $sgn(\mu)$, $tan(\beta)$ Contributions to a_µ arise from charginos, sleptons LHC searches sensitive to squarks, gluinos

D. Hertzog, Ann. Phys. (Berlin), 2015, courtesy D. Stockinger

Z', W', UED, Littlest Higgs Assumes typical weak coupling

Radiative muon mass generation

Unparticles, Extra Dimension Models, SUSY (tan $\beta = 5$ to 50)

Dark Matter

- **Cosmological observations** (galaxy rotation curves, lensing) point to much more mass in the universe than expected
- Many theories to explain dark matter
- A new U(1)' symmetry: dark photon A'
 - Could impact the muon's magnetic moment
 - Many direct-detection searches underway

The Big Move: Transporting the Ring from BNL to FNAL $\int_{-\infty}^{\mu}$

- June 2013 June 2015
- Ring deconstructed at BNL, transported by barge/ flatbed trailer
- Reassembled at FNAL
- Ring successfully cooled and powered to 1.45 T in September 2015 remarkable achievement!

Getting Muons Into the Ring: Inflector Magnet

- Outside ring: B = 0 T, inside: B = 1.45 T
- Need to cancel field in order to get muons in (strong deflection otherwise)
- No perturbation to field outside shield
- New inflector design with higher transmission under development

Present inflector

New inflector coil winding mount

Improve injection by 40%

Fit to:
$$N(t) = N_0 e^{-t/\tau} [1 - A \cos(\omega_a t + \phi)]$$

What Drives the ω_a Fit Start Time?

• Start fit window to extract ω_a at ~ 30 µs to avoid:

Quad scraping at early times to reduce losses

What Affects the Beam Shape?

- Kicker pulse strength, shape affects structure of beam
- Beam width affected by dynamics

Beam Dynamics Corrections

• Full expression for ω_a:

$$\vec{\omega}_a = \vec{\omega}_S - \vec{\omega}_C = -\frac{e}{mc} \left[a_\mu \vec{B} - \left(a_\mu - \frac{e}{a_\mu} \vec{B} - \frac{e}{a_\mu} \right) \right] \left[a_\mu \vec{B} - \frac{e}{a_\mu} \right] \left[a_\mu$$

• Choose $\gamma = 29.3 \ (p_{\mu} = 3.094 \ \text{GeV/c})$

Pulsed Nuclear Magnetic Resonance

- Apply an RF pulse for a short time to the sample at Larmor
- Spin precession induces an EMF in the pickup coil
- Decay of signal driven by:

Magnetic Circuits

$$\mathcal{E} = \oint \vec{f_s} \cdot d\vec{\ell} = V = IR \qquad \begin{array}{c} \text{Can write a s} \\ \text{equation for } \vec{r} \\ \mathcal{F} = \oint \vec{H} \cdot d\vec{\ell} = NI \\ \vec{B} = \mu_0 \left(1 + \chi_m\right) \vec{H} = \mu \vec{H} \\ \vec{R} \\ \text{ewrite H in terms} \\ \Phi = \vec{B} \cdot \vec{A} = \mu \vec{H} \cdot \vec{A} \\ \Phi \\ \phi \\ \frac{d\ell}{\mu A} = \mathcal{F} \\ \Rightarrow \\ \mathcal{R} = \oint \frac{d\ell}{\mu A} = \frac{\mathcal{F}}{\Phi} \\ \end{array}$$

Magnetic Reluctance

Analogous to resistance in an electrical circuit

$$V = 1$$

- Current flows along a path of least resistance while field lines will take a path of least reluctance
- While the emf drives electric charges (Ohm's Law), the mmf "drives" magnetic field lines (Hopkinson's Law)

$IR \Leftrightarrow \mathcal{F} = \Phi \mathcal{R}$

Magnet Anatomy

• For E821, Gordon Danby had a brilliant magnet design

$B = 1.45 T (\sim 5200 A)$

• Non-persistent current: fine-tuning of field in real time

12 C-shaped yokes

- 3 upper and 3 lower poles per yoke
- 72 total poles

Shimming knobs

- Pole separation determines field: pole tilts, non-flatness affect uniformity
- Top hats (30 deg effect, dipole)
- Wedges (10 deg effect, dipole, quadrupole)
- Edge shims (10 deg effect, dipole, quadrupole, sextupole)
- Laminations (1 deg effect, dipole, quadrupole, sextupole)
- Surface coils (360 deg effect, quadrupole, sextupole,...)

Optimizing the Dipole Moment

- Want to optimize the vertical component of the field
- Step and tilt discontinuities in pole surfaces yield large variations in the field
- To reduce/remove such effects, make adjustments to pole feet, which changes the magnet gaps and tilts
 - Use 0.001 0.010" thick shims
 - Requires removal of poles from the ring
- Informed by a computer model that optimizes the pole configurations
 - Requires global continuity between pole surfaces
 - Allows only three adjacent poles to be moved at a time (preserves alignment)

Minimizing the Quad, Sext, Octu

Calibrated shimming knobs

- 48 top hats
- 864 wedges
- ~8400 iron foils (on pole surfaces)

Coarse tuning: top hat & wedge adjustments (dipole, quadrupole)

• Least-squares fit to field maps predicts top hat and wedge positions

Fine tuning: iron foils (quadrupole, sextupole,...)

- Modeled as saturated dipoles in 1.45 T field
- Computer code predicts foil width (mass) distribution to fill in the valleys of the field map

Rough Shimming Results

Magnetic Field Comparison: BNL 821 and FNAL E989

Dipole Vs Azimuth

• BNL E821: 39 ppm RMS (dipole), 230 ppm peak-to-peak • FNAL rough shimming: 10 ppm RMS (dipole), 75 ppm peak-to-peak

 Laminations very successful in reducing field variations

Magnetic Field Variations

First Magnetic Field Map, Oct 14 2015

- Gradual drift from materials, pole gap changes
- 36 pairs of poles \rightarrow 10-degree structure
- Pole shape:
- Pole-to-pole discontinuities

Auxiliary Field Systems

Surface Correction Coils

- Continuous PCB traces going around the ring on pole surfaces
- 100 concentric traces on upper poles, 100 on lower poles
- Programmable range: ± 20 ppm on the field
- Used to cancel higher-order multipole moments in the magnetic field (on average)

Power Supply Feedback

- Programmable current source with a range of ± 5 ppm on the field
- Uses data from fixed probe system to stabilize the field at a specified set point

Fluxgates

- Measure (x,y,z) components of transient fields in the hall
- Sensitive down to 10⁻⁹ T (DC or AC) fields
- Bandwidth up to 1 kHz

Magnet Insulation

- Temperature variations in the hall affect the quality of the magnetic field
 - Observed ~ 20 ppm/deg C effects on the dipole moment during the run
 - Also affects ability to track higher-order multipoles
- Two main issues
 - Large changes in average temperature over time (2–3°C)
 - Differential changes across the magnet (~3°C)
- Two-pronged solution:
 - Improved cooling system in the hall
 - Install fiberglass insulation blanket on magnet steel

Joe Price | Measuring the Anomalous Magnetic Moment of the Muon 3/07/19 **68**

Installed blankets this past summer

Procedure

• Select **trolley** probe to calibrate

Procedure

- Select **trolley** probe to calibrate
- Impose a **known gradient** across the trolley; compare to bare field B_0 . Define $\Delta B = B(I \neq 0)$ - B(I=0)

-	1
<u>p</u>	/=
1-	ī
	1
	1
	-
	1

Procedure

- Select **trolley** probe to calibrate
- Impose a **known gradient** across the trolley; compare to bare field B_0 . Define $\Delta B = B(I \neq 0)$ - B(I=0)
- Unique ΔB for each **trolley** probe gives position
- Move **plunging probe** into volume; measure ΔB and determine distance to move **plunging** probe

-	
<u></u>	12
-	1
	12

Procedure

- Select **trolley** probe to calibrate
- Impose a **known gradient** across the trolley; compare to bare field B_0 . Define $\Delta B = B(I \neq 0)$ - B(I=0)
- Unique ΔB for each **trolley** probe gives position
- Move **plunging probe** into volume; measure ΔB and determine distance to move **plunging** probe
- Iterate until **plunging probe** ΔB matches **trolley** probe ΔB
- Perform for radial, vertical, azimuthal coordinates

Calibrating the Trolley

Procedure

- Select **trolley** probe to calibrate
- Impose a **known gradient** across the trolley; compare to bare field B_0 . Define $\Delta B = B(I \neq 0)$ - B(I=0)
- Unique ΔB for each **trolley** probe gives position
- Move **plunging probe** into volume; measure ΔB and determine distance to move **plunging** probe
- Iterate until **plunging probe** ΔB matches **trolley** probe ΔB
- Perform for radial, vertical, azimuthal coordinates
- Shim the field to be highly uniform, and measure using the **PP** and the **trolley** (rapid swapping)

Radiation Damping

What is it?

- Precessing spins induce emf in pickup coil; this in turn generates an alternating magnetic field that acts to rotate spins back towards the main field
- Size of effect: $\delta_{RD} \sim [(f_0-f_L)/f_0]\eta QM_z(t)$
 - f_0 = resonant frequency of circuit; f_L = Larmor frequency
 - $\eta = filling factor; Q = quality factor of circuit$
 - M_z(t) = magnetization of sample

How to quantify?

- Use coils to produce a longitudinal field
 - Precise control over main field to mimic damping effect

• Vary $\pi/2$ pulse => vary $M_z(t)$ => changes δ_{RD}

74 3/07/19 Joe Price | Measuring the Anomalous Magnetic Moment of the Muon

Graphite target (20 mm)

Muon g-2 at JPARC

Surface maionet

Joe Price | Measuring the Anomalous Magnetic Moment of the Muon 3/07/19 75

3 GeV 333 uA proton beam from MUSE H-line at JPARC

Muc

sparationneutron

JPARC Facilities

J-PARC Facility (KEK/JAEA)

Neutrino Beam To Kamioka

Images from Tsutomu Mibe

Joe Price I Measuring the Anomalous Magnetic Moment of the Muon 3/07/19 76

JPARC Facilities

(KEK/IAFA)

Images from Tsutomu Mibe

Joe Price I Measuring the Anomalous Magnetic Moment of the Muon 3/07/19 77

The Muon g-2 Experiment at JPARC

- New experiment being prepared in Japan
- Features
 - Low-emittance muon beam
 - 40 silicon high-resolution tracking vanes
 - High-uniformity storage field (~ 1 ppm)
- Different technique \rightarrow different systematics
 - Excellent cross-check against E989 at FNAL

The Muon g-2 Experiment at JPARC: Current Status

- Various systems are progressing forward
 - Beamline
 - e⁺ trackers
 - Magnetic field

Cross Calibration at ANL Feb 2019

Images from Tsutomu Mibe (KEK)

Joe Price | Measuring the Anomalous Magnetic Moment of the Muon 3/07/19

Muon g-2 Experiment Comparison

Parameter	E34 @ JPARC	E989 @ Fermilab
Beam	High-rate, ultra-cold muon beam (p = 300 MeV/c)	High-rate, magic-momentum muons (p = 3.094 GeV
Polarization	P _{max} = 50-90% (spin reversal possible)	$P \approx 97\%$ (no spin reversal)
Magnet	MRI-like solenoid (r _{storage} = <mark>33 cm</mark>)	Storage ring (r _{storage} = 7 m)
B-field	3 Tesla	1.45 Tesla
B-field gradients	Small gradients for focusing	Try to eliminate
E-field	None	Electrostatic quadrupole
Injection	Spiral + kicker (~90% efficiency)	Inflector + kicker (~5% efficiency)
Positron detector	Silicon vanes for tracking	Lead-fluoride calorimeter
B-field measurement	Continuous wave NMR	Pulsed NMR
Current sensitivity goal	450 ppb	140 ppb

$\nu_{12} = 1.906 \text{ GHz}$ **Related Muon Physics** $\Delta \nu$ TM210

Joe Price | Measuring the Anomalous Magnetic Moment of the Muon 3/07/19 81

TM110

μ

 a_{μ}

• Recall the expression for a_{μ} :

Joe Price I Measuring the Anomalous Magnetic Moment of the Muon 3/07/19 82

$= \frac{\omega_a}{\tilde{\omega}_p} \frac{\mu_p}{\mu_e} \frac{m_\mu}{m_e} \frac{g_e}{2}$

- Recall the expression for a_{μ} :
- a_{μ} • m_{μ}/m_e value based on muonium hyperfine theory:

$$\Delta \nu_{\rm Mu}({\rm Th}) = \frac{16}{3} c R_{\infty} \alpha^2 \frac{m_e}{m_{\mu}} \left(1 + \frac{m_e}{m_{\mu}}\right)^{-3} + \text{higher ord}$$

• Equate theory to experiment, treat m_{μ}/m_{e} as a free parameter, obtain m_{μ}/m_e to 22 ppb

der terms

- Recall the expression for a_{μ} :
- m_{μ}/m_e value based on muonium hyperfine theory:

$$\Delta \nu_{\rm Mu}({\rm Th}) = \frac{16}{3} c R_{\infty} \alpha^2 \frac{m_e}{m_{\mu}} \left(1 + \frac{m_e}{m_{\mu}}\right)^{-3} + \text{higher ord}$$

- Equate theory to experiment, treat m_{μ}/m_{e} as a free parameter, obtain m_{μ}/m_e to 22 ppb
- Muonium hyperfine splitting at JPARC aims to improve precision by a factor of 10 for μ_{μ}/μ_{p} to << 120 ppb

der terms

- Recall the expression for a_{μ} :
- m_{μ}/m_e value based on muonium hyperfine theory:

$$\Delta \nu_{\rm Mu}({\rm Th}) = \frac{16}{3} c R_{\infty} \alpha^2 \frac{m_e}{m_{\mu}} \left(1 + \frac{m_e}{m_{\mu}}\right)^{-3} + \text{higher ord}$$

- Equate theory to experiment, treat m_{μ}/m_{e} as a free parameter, obtain m_{μ}/m_e to 22 ppb
- Muonium hyperfine splitting at JPARC aims to improve precision by a factor of 10 for μ_{μ}/μ_{p} to << 120 ppb
- Allows extraction of a_{μ} independent of theory:

$$a_{\mu} = \frac{\omega_{a}/\tilde{\omega}_{p}}{\mu_{\mu}/\mu_{p} - \omega_{a}/\tilde{\omega}_{p}}$$

Joe Price | Measuring the Anomalous Magnetic Moment of the Muon 3/07/19 85

der terms

EDM measurement at FNAL

- Precession plane tilts towards center of ring
- Causes an increase in muon precession frequency
- Oscillation is 90° out of phase with the a_{μ} oscillation
- 10 x improvement to current limit expected

$$\omega_{tot} = \sqrt{\omega_a^2 + \omega_a^2}$$

