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Inflation

Inflationary models resolve a number of problems associated with
Big Bang cosmology which include the flatness problem,

the horizon problem, and the monopole problem?.

!A. H. Guth, Phys. Rev. D 23, 347 (1981); A. A. Starobinsky, Phys. Lett. B
91, 99 (1980)
A. D. Linde, Phys. Lett. 108B, 389 (1982). A. Albrecht and P. J. Steinhardt,

Phys. Rev. Lett. 48, 1220 (1982).
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Figure: Limits on the tensor-to-scalar ratio, rg.002 as a function of ng in the
ACDM model at 95% CL, from Planck alone (grey area) or including BICEP2/Keck
data 2014 (red) and BAO (blue). From Y. Akrami et al. [Planck Collaboration],
arXiv:1807.06205 [astro-ph.CO].

Current limits
ns = 0.9649 + 0.0042 (68% CL) ,
r < 0.064 (95% CL) ,

mn¢ not constrained.
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Axionic inflation

An early inflationary model is the so-called natural inflation where
the inflaton is an axion with potential 2

V(a) = A* <1 n cos(;)> :

where f is the axion decay constant. For successful inflation one
requires
f > 5Mp;.

2K. Freese, J. A. Frieman and A. V. Olinto, Phys. Rev. Lett. 65, 3233
(1990).
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» The weak gravity conjecture? indicates f < Mpy.

» Analyses for periodic fields in strings indicate that f < Mp;
is the norm (except for some anomalous cases) *.

» Numerical estimates of the decay constant in strings give the
range for f of (1016 — 10'8) GeV® .

3N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, JHEP 0706, 060
(2007).
*T. Banks, M. Dine, P. J. Fox and E. Gorbatov, JCAP 0306, 001 (2003).
®P. Svrcek and E. Witten, “Axions In String Theory,” JHEP 0606, 051
(2006).
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Effective theory of inflation

Inflation occurs at scales far below the Planck scale. Here the
effective Lagrangian that governs inflation would be very different
from the microscopic Lagrangian.

While f < Mp; may hold for the microscopic Lagrangian, the
decay constant that enters in the effective theory could be different
which gives the hope of generating an fe > Mp;.

There are several proposals which try to generate such effective
theories. Two example are

» Alignment mechanism

» Coherent enhancement mechanism (CEM)
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Alignment mechanism °

One suggestion to realize fo >> f is to use two axions and the
alignment mechanism to achieve a flat direction. For a model with
two axions ¢ and ¢ one considers a potential

alq ¢1 ¢2>] 4[_ <¢1 (l)zﬂ
V(¢) = A [1 cos(f1 fa 4+ A5 |1 — cos AR

> A flat direction is generated if

i fs

f2 fa
One then considers deviations from the constraint to lift the
flat direction and generate an effective decay constant for the
inflaton.

» Difficult to implement in strings with stabilized moduli’.

6J. E. Kim, H. P. Nilles and M. Peloso, JCAP 0501, 005 (2005).
7C. Long, L. McAllister and P. McGuirk, Phys. Rev.-D 90; 023501 (2014).
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Axion Landscape

The axions we consider are not QCD axions for which the
decay constant lies in the range

10° GeV < f < 10'2 GeV.

Rather our axions are string axions where f typically lies in
the range 1016 GeV — 1018 GeV.

For generality consider a landscape of m number of chiral
fields charged under a U (1) shift symmetry and a
corresponding number of chiral fields which are oppositely
charged.

There are then 2m number of axionic fields

a1, a2y AQm; a176_7'2, * QA
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We can then construct the following linear combinations

ak41 ai
by = -, k=1,2,--- ,m—1
fk:—|—1 fl’ ) ’ ’
_ a a
by = =1t 2l k—1,2,-. ,m—1,
Frev1  J1
a  a
b+:f—|—j
fi fi’

b_ = ! (Z frar — Z f;ﬂk) .
VS Y T
(1)

Thus the first three equations in Eq.(1) give us

2(m — 1) 4+ 1 = 2m — 1 linear combinations of axionic fields
which are invariant under the shift symmetry while the last one
gives us the combination of axionic fields which is sensitive to shift
symmetry. b_ is the pseudo-Nambu-Goldstone-Boson (pNGB).
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pNGB is the inflaton®

» Consider a superpotential of the form
W =W,+ Wy

where Wy is invariant under the shift symmetry and Wy,
breaks the shift symmetry. The stability conditions W ; = 0
will generate large masses for all the fields except b_ while
b_ receives mass only from Wy,

» The potential of the axions can be decomposed into two parts
so that

V = ‘/fast(bk/.feN, Bk/feNa b+/feN) + ‘/slow(b—/.feN)

Inflation is controlled only by b_ and the remaining fields play
no role. When fr, = fi = f, N = 2m,

fen =Y 2+ Fr=+vNf. Nflation

k=1 k=1

8P.N. and M. Piskunov, JHEP 1803, 121 (2018) [arXiv:1712.01357 [hep-ph]].
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General analysis of Coherent Enhancement Mechanism for f,

Consider an axionic inflaton with a Lagrangian of the form

1,
L= 5¢2—V(¢)

Let us assume that ¢ ~ ¢q is the point where one has horizon
exit and simulate the potential near this point by

Ve(¢) = A* (1 - cos((;o)>

e

It then follows that
V(¢o)

fe =
\/V'2(¢0) — 2V (o) V" (o)
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Effective axion decay constant f. in terms of r and ng

M3, (V' (¢0))2 2 V" (¢0)
= _ =M% —=.
T2 \Vge ) 0 T TPV (o)
This leads to
__ Mm _ Mp;
V2(€—mn) \/l—ns—'r/4.

fe

where we used the relation: ng =1 — 6e + 21, =r = 16¢.
Planck data:
ns = 0.9649 4 0.0042 (68% CL), » < 0.064 (95% CL)

gives model-independent bounds on fe

4.9 < fo/Mp; < 10.0 (95% CL). (3)
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lllustration of Coherent Enhancement Mechanism (CEM) °

CEM arises from constructive and destructive interference among
several terms in the potential. Consider, for example, the potential

Vzkz::IAi <1—cos <k;?>> :

Assume that near the horizon exit % = r, then using Eq. (2)

\/ ZkEodd A%
\/Zkeodd szé - EkEeven k2Ai

A cancellation between the odd and even sums in the denominator
leads to fe/f > 1.

.fe/f:

°P.N. and M. Piskunov, arXiv:1906.02764 [hep-ph].
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Three classes of models

> SUSY models
» Supergravity models

» Supersymmetric Dirac-Born -Infeld models
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SUSY model

Suppose we have a set of fields ® and ® which carry opposite charges under a shift
symmetry. We parametrize the scalar components so that

b= (f+p)et, §=(F+pe?,

This allows us to write a non-trivial superpotential which can stabilize the saxions®

W =Ws 4+ Wy

Wep = i (Aybl + Alél) )

=1

W is symmetry preserving and Wy, breaks the shift symmetry. Saxions are stabilized
via constraints

We=0=Wg.

)

0Gimilar to superpotentials in analysis of an ultralight axion:

J. Halverson, C. Long and P.N., Phys. Rev. D 96, no. 5, 056025 (2017)-
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Slow roll potential with stabilized saxions

We define linear combinations b4 of a, @ so that b is invariant under the shift
symmetry and b_ is not.

by = %(a +a).

b undergoes fast roll and b_ is the infation which undergoes slow roll and controls
inflation 11

V(b) = ‘/fast + ‘/slow(b—)

Vitow :ri:;c,, (1 — cos (\/_szb_» + glr:z:rl Crs (1 — cos (’;/_E;b_))

“PN., M. Piskunov, JHEP 1803, 121 (2018) [arXiv:1712.01357-[hep=ph]].
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Emergence of a locally flat potential

Red curve: Inflation potential.
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Emergence of effective decay constant

» Viow for the two axion model with ¢ = 3

5_72_]”)) + 427.466 (1 — cos <2b7_)
— 35.4939 (1 — cos (%)) — 52.9837 (1 — cos (%))
%)) — 0.632442 (1 — cos (%)) .

V (b_) = 1398.96 (1 — cos (

— 8.28504 (1 — cos <

P Superposition gives local flatness.

b_ { max for 1st,3rd, 5th
— =7
V2f min for 2nd,4th, 6th

VX k—odd AR 1855 .,

fe/f = _ N
\/[Zk—odd k2AE — > cven szz] /872 — 839
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Fast roll: b (blue)
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Slow roll: b_ (red)
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Axion inflation in Supergravity

We can extend the analysis to supergravity where the scalar potential has the form 12

V = eK[D;WK 1D« W* — 3|W|% + Vp,
DWW =W_; + K;W.
> As for the global SUSY case, here too we consider a single pair of chiral fields,
¢i, © = 1,2 with opposite shift symmetries where
bi = (pz+7'az)/\/§7 1=1,2,

» The following form for the Kahler potential avoids the m problem

K=32i+e])?,

127 H. Chamseddine, R. L. Arnowitt and P. N., Phys. Rev. Lett. 49, 970 (1982);
E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Nucl. Phys. B 212, 413
(1983).
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Saxion stabilization in SUGRA

» Saxions can be stabilized by imposition of spontaneous
symmetry breaking conditions

D;W =0, i=1,2

» As in global SUSY a_ = %(al — az) is the inflaton and
the superpotential that involves the inflaton is

q . a_ . a_
st = Z An(ez’yn\/_Tf —+ e_zﬁyn\/_Tf) .

n=1
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Inflaton potential in supergravity

» Analysis for the case ¢ = 3 gives

6
V(a_) = M,f,lezfz/IVIP2 k;l Ck (1 — cos (%)) ,

where C}, are given in terms of A; (i=1-3). One has a linear combination of six
cosine terms and their superposition makes the model very different from the
natural inflation model.
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Supersymmetric Dirac-Born-Infeld models

Example of a simple non-supersymmetric DBI action is

Lpsr = —%\/1 ¥ 0,60,0) — V($)

Early work on supersymmetric DBI model with single field was done by Rocek (1997),
Tseytlin (1999), Sasaki, Yamaguchi, Yokoyama (2012). Here we consider a two field
supersymmetric DBI model with fields (®1, ®2) model'3

L =Lp + Lg, where

Lp = /d“@ (®10] + @201,

+/d401°‘61T 1 Do 1) (D*@{Da2]) G(¢)
+/d49

W= g aT W
where T is a parameter of the dimension of (mass)4 .
A = (0a¢1890] + 8a20"¢3)/T
B = o1 (8a$10%¢$10¢10°9] + 8a20%$20,050°$3)/T*
PN, M. Piskunov, JHEP 1902, 034 (2019) [arXiv:1807.02549 [hep-ph]].

®2Da®2) (D@} Dq ) G(9)




F-equations

F3+ppFr+aq.=0,k=1,2,

where pg, q are defined by

(aw> “LoW 1 — 2G (¢) Buprd*pi
Pk =

Opr Ak 2G (¥)
1 (BW)_1<6W>2

q=7

* T 2G (o) \Oor, B,

Since F}, satisfies a cubic equation, there are three roots which are given by

i dk qr\2 Pr\3 /e
F, =w’ <—2 + (*2 ) + (*3 ) >
s—j(_ 9k a2, ey’

where w is the cube root of unity and 7 = 0,1, 2. Physical root is j = 0.
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SUSY DBI 4

C= (%Fi+h.c.)+T_T,/(1+A)2 _B

2

+ > [FiFf + aG(9)|(—2F,F; 024:0°¢7 + F2F;?))]|

=1

Slow roll parameters for DBI (Maldacena 2002, Seery 2005, Chen et al 2005, Lyth
2005)

=T am= S ey @)
H H2, H €HH, H CSH.

Further, the spectral indices ng, n¢ in this case are given by

ng =1—2eyg — Mg — SH ,

ng = —2€yg, 7= —8csnt. (5)

Cs is the speed of sound in the medium.

PN, M. Piskunov, arXiv:1906.02764 [hep-ph].
25/35



Explicit form of DBI Lagrangian

L=Lr+Lyr- (6)
L is given by

O

L1 is more complicated:

-2

2 2 4 a_

Lrp =T (275 +272 — — [T+ (a1 = 1) =
1

><+4k(f4—kf_)
.2 .2

e 2 2 _ 2 _ni=)) e 4 4
tr ez an (2 ('7:++}-_ 3oy <T+(al Y 4T>> ar TTH T

2 a2 \? 4 a2 2 2
toaz | THE -V ) — o (THE@ - (F2+72)) ),

®)
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where

a2 (2 —a1)a*
TES TN T T s ) ©
k=3 GG 1 a_m a_n n a_ (m —n) (10)
= ygnmn mYn cos \/_Tf cos \/Ef Ccos \/Ef )
1/3
1 a2 1, a2 \? 1 a2 \?®
Fr=E T T ar ) P12 " " ar) Trmas\T TV :
(11)
Ap21/20—k)
= — . 12
Sk BTk (12)

Here 3 is an arbitrary dimensionless parameter which we choose such that G ~ 1, and which determines the
scale of symmetry breaking terms relative to T'.
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Friedman equations for DBI

3M§—2 =242 8,L — L.
R2 a4’
0 0*L 2 oL | . 37L+6Ha oL
a2 9842 ~ a2 - da_ a2
+2627La2 =0
da_0a%: —

The potential does not enter by itself, and it is the Lagrangian that
governs the Friedman equations.

Approximations one uses in flat potential models are not possible
here. Analysis of DBI requires numerical simulations.

28/35



Result of numerical simulations!®
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*PN, M. Piskunov, JHEP 1902, 034 (2019) [arXiv:1807.02549 [hep-ph]].



The theoretical upper limit on r in single field inflation for
flat potentials

For flat potentials slow roll gives

1 V(¢) Ag¢
N = — d ~N ——
M2, ) V(o) ¢ Mpi\/2¢€
8(Ag)?
"7 MmN

For Ad)/Mpl <land N = [50 - 60]
r < 0.003. (13)

Thus we find that the theoretical upper limit on 7 in single field
inflation for flat potentials is O(1073).
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r in DBI

For DBI the density governs the slow-roll and not the potential,
ie.,

8 dp

pdN "’

T can be as large as the current experimental limit of » = 0.064 if
the slope dp/dN is large.
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The slope dp/dIN determines the size of r.

p/po for a flat potential
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Summary

e Axion inflation with N = [50 — 60] and (ns,r) in the blue
region of Planck data can be achieved with sub-Planckian decay
constant consistent with WGC.

SUSY-flat potential SUSY- DBI
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n ne

e DBI allows for much larger values of r than the ones in flat
potential for single field inflation.
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H at horizon exit Inflaton mass
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Figure 5. Left panel: a histogram of the values of Hubble parameter at horizon exit for the
same data set as in figure 1 for points that are consistent (green) and not consistent (red) with
experimental constraints on r and n,. Right panel: the same as the left panel except the histogram
of the inflaton a_ mass is shown instead.
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