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Inflation

Inflationary models resolve a number of problems associated with

Big Bang cosmology which include the flatness problem,

the horizon problem, and the monopole problem1.

1A. H. Guth, Phys. Rev. D 23, 347 (1981); A. A. Starobinsky, Phys. Lett. B
91, 99 (1980)
A. D. Linde, Phys. Lett. 108B, 389 (1982). A. Albrecht and P. J. Steinhardt,
Phys. Rev. Lett. 48, 1220 (1982).
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Figure: Limits on the tensor-to-scalar ratio, r0.002 as a function of nS in the
ΛCDM model at 95% CL, from Planck alone (grey area) or including BICEP2/Keck
data 2014 (red) and BAO (blue). From Y. Akrami et al. [Planck Collaboration],
arXiv:1807.06205 [astro-ph.CO].

Current limits

ns = 0.9649± 0.0042 (68% CL) ,

r < 0.064 (95% CL) ,

nt not constrained.
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Axionic inflation

An early inflationary model is the so-called natural inflation where
the inflaton is an axion with potential 2

V (a) = Λ4

(
1 + cos(

a

f
)

)
,

where f is the axion decay constant. For successful inflation one
requires

f > 5MP l.

2K. Freese, J. A. Frieman and A. V. Olinto, Phys. Rev. Lett. 65, 3233
(1990).
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I The weak gravity conjecture3 indicates f < MP l.

I Analyses for periodic fields in strings indicate that f < MP l

is the norm (except for some anomalous cases) 4.

I Numerical estimates of the decay constant in strings give the
range for f of (1016 − 1018) GeV5 .

3N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, JHEP 0706, 060
(2007).

4T. Banks, M. Dine, P. J. Fox and E. Gorbatov, JCAP 0306, 001 (2003).
5P. Svrcek and E. Witten, “Axions In String Theory,” JHEP 0606, 051

(2006).
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Effective theory of inflation

Inflation occurs at scales far below the Planck scale. Here the
effective Lagrangian that governs inflation would be very different
from the microscopic Lagrangian.

While f < MP l may hold for the microscopic Lagrangian, the
decay constant that enters in the effective theory could be different
which gives the hope of generating an fe > MP l.

There are several proposals which try to generate such effective
theories. Two example are

I Alignment mechanism

I Coherent enhancement mechanism (CEM)
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Alignment mechanism 6

One suggestion to realize fe >> f is to use two axions and the
alignment mechanism to achieve a flat direction. For a model with
two axions φ1 and φ2 one considers a potential

V (φ) = Λ4
1

[
1− cos

(
φ1

f1
+
φ2

f2

)]
+ Λ4

2

[
1− cos

(
φ1

f3
+
φ2

f4

)]
.

I A flat direction is generated if

f1

f2
=
f3

f4
.

One then considers deviations from the constraint to lift the
flat direction and generate an effective decay constant for the
inflaton.

I Difficult to implement in strings with stabilized moduli7.
6J. E. Kim, H. P. Nilles and M. Peloso, JCAP 0501, 005 (2005).
7C. Long, L. McAllister and P. McGuirk, Phys. Rev. D 90, 023501 (2014).
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Axion Landscape

I The axions we consider are not QCD axions for which the
decay constant lies in the range

109 GeV < f < 1012 GeV.

I Rather our axions are string axions where f typically lies in
the range 1016 GeV − 1018 GeV.

I For generality consider a landscape of m number of chiral
fields charged under a U(1) shift symmetry and a
corresponding number of chiral fields which are oppositely
charged.

I There are then 2m number of axionic fields

a1, a2, · · am; ā1, ā2, · · ām
8/35



We can then construct the following linear combinations

bk =
ak+1

fk+1
−
a1

f1
, k = 1, 2, · · · ,m− 1 ,

bk =
ak+1

fk+1

−
a1

f1

, k = 1, 2, · · · ,m− 1 ,

b+ =
a1

f1
+
a1

f1

,

b− =
1√∑m

k=1 f
2
k +

∑m
k=1 f

2

k

(
m∑
k=1

fkak −
m∑
k=1

fkak

)
.

(1)

Thus the first three equations in Eq.(1) give us
2(m− 1) + 1 = 2m− 1 linear combinations of axionic fields
which are invariant under the shift symmetry while the last one
gives us the combination of axionic fields which is sensitive to shift
symmetry. b− is the pseudo-Nambu-Goldstone-Boson (pNGB).
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pNGB is the inflaton8

I Consider a superpotential of the form

W = Ws +Wsb

where Ws is invariant under the shift symmetry and Wsb

breaks the shift symmetry. The stability conditions W,i = 0
will generate large masses for all the fields except b− while
b− receives mass only from Wsb.

I The potential of the axions can be decomposed into two parts
so that

V = Vfast(bk/feN , b̄k/feN , b+/feN) + Vslow(b−/feN)

Inflation is controlled only by b− and the remaining fields play
no role. When fk = f̄k = f , N = 2m,

feN =

√√√√ m∑
k=1

f2
k +

m∑
k=1

f
2

k =
√
Nf . N-flation

8P.N. and M. Piskunov, JHEP 1803, 121 (2018) [arXiv:1712.01357 [hep-ph]].
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General analysis of Coherent Enhancement Mechanism for fe

Consider an axionic inflaton with a Lagrangian of the form

L =
1

2
φ̇2 − V (φ)

Let us assume that φ ∼ φ0 is the point where one has horizon
exit and simulate the potential near this point by

Ve(φ) = Λ4

(
1− cos(

φ0

fe
)

)
It then follows that

fe =
V (φ0)√

V ′2(φ0)− 2V (φ0)V ′′(φ0)
(2)
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Effective axion decay constant fe in terms of r and ns

ε =
M2
Pl

2

(
V ′ (φ0)

V (φ0)

)2

, η = M2
Pl

V ′′ (φ0)

V (φ0)
.

This leads to

fe =
MPl√

2 (ε− η)
=

MPl√
1− ns − r/4

.

where we used the relation: ns = 1− 6ε+ 2η , r = 16ε .

Planck data:

ns = 0.9649± 0.0042 (68% CL) , r < 0.064 (95% CL)

gives model-independent bounds on fe

4.9 ≤ fe/MPl ≤ 10.0 (95% CL) . (3)
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Illustration of Coherent Enhancement Mechanism (CEM) 9

CEM arises from constructive and destructive interference among
several terms in the potential. Consider, for example, the potential

V =

n∑
k=1

Λ4
k

(
1− cos

(
kφ

f

))
.

Assume that near the horizon exit φ
f

= π, then using Eq. (2)

fe/f =

√∑
k∈odd Λ4

k√∑
k∈odd k

2Λ4
k −

∑
k∈even k

2Λ4
k

.

A cancellation between the odd and even sums in the denominator
leads to fe/f > 1.

9P.N. and M. Piskunov, arXiv:1906.02764 [hep-ph].
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Three classes of models

I SUSY models

I Supergravity models

I Supersymmetric Dirac-Born -Infeld models
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SUSY model

Suppose we have a set of fields Φ and Φ̄ which carry opposite charges under a shift
symmetry. We parametrize the scalar components so that

φ = (f + ρ)eia/f , φ̄ = (f̄ + ρ̄)eiā/f ,

This allows us to write a non-trivial superpotential which can stabilize the saxions10

W = Ws +Wsb

Wsb =

q∑
l=1

(
AlΦ

l + ĀlΦ̄
l
)
.

Ws is symmetry preserving and Wsb breaks the shift symmetry. Saxions are stabilized
via constraints

W,φ = 0 = W,φ̄ .

10Similar to superpotentials in analysis of an ultralight axion:
J. Halverson, C. Long and P.N., Phys. Rev. D 96, no. 5, 056025 (2017).
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Slow roll potential with stabilized saxions

We define linear combinations b± of a, ā so that b+ is invariant under the shift
symmetry and b− is not.

b± =
1
√

2
(a± ā).

b+ undergoes fast roll and b− is the infation which undergoes slow roll and controls
inflation 11

V (b) = Vfast + Vslow(b−)

Vslow =

q∑
r=1

Cr

(
1− cos

(
r
√

2f
b−

))
+

q∑
s=1

q∑
r=s+1

Crs

(
1− cos

(
r − s
√

2f
b−

))

11PN., M. Piskunov, JHEP 1803, 121 (2018) [arXiv:1712.01357 [hep-ph]].
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Emergence of a locally flat potential

Red curve: Inflation potential.
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Emergence of effective decay constant

I Vslow for the two axion model with q = 3

V
(
b−
)

= 1398.96

(
1− cos

(
b−√
2f

))
+ 427.466

(
1− cos

(
2b−√

2f

))
− 35.4939

(
1− cos

(
3b−√

2f

))
− 52.9837

(
1− cos

(
4b−√

2f

))
− 8.28504

(
1− cos

(
5b−√

2f

))
− 0.632442

(
1− cos

(
6b−√

2f

))
.

I Superposition gives local flatness.

b−√
2f

= π :

{
max for 1st, 3rd, 5th

min for 2nd, 4th, 6th
.

fe/f =

√∑
k−odd Λ4

k√[∑
k−odd k

2Λ4
k −

∑
k−even k

2Λ4
k

] =

√
1355

√
872− 839

' 6.4
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Fast roll: b+ (blue) Slow roll: b− (red)

r vs ns fe vs f

19/35



Axion inflation in Supergravity

We can extend the analysis to supergravity where the scalar potential has the form 12

V = eK [DiWK
−1
ij∗Dj∗W

∗ − 3|W |2] + VD ,

DiW = W,i +K,iW .

I As for the global SUSY case, here too we consider a single pair of chiral fields,
φi, i = 1, 2 with opposite shift symmetries where

φi = (ρi + iai)/
√

2, i = 1, 2 ,

I The following form for the Kähler potential avoids the η problem

K =
∑
i

1

2
(φi + φ

†
i )

2 ,

12A. H. Chamseddine, R. L. Arnowitt and P. N., Phys. Rev. Lett. 49, 970 (1982);
E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Nucl. Phys. B 212, 413
(1983).
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Saxion stabilization in SUGRA

I Saxions can be stabilized by imposition of spontaneous
symmetry breaking conditions

DiW = 0, i = 1, 2

I As in global SUSY a− = 1√
2
(a1 − a2) is the inflaton and

the superpotential that involves the inflaton is

Wsb =

q∑
n=1

An(e
iγn

a−√
2f + e

−iγn
a−√

2f ) .
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Inflaton potential in supergravity

I Analysis for the case q = 3 gives

V
(
a−
)

= M4
P e

2f2/M2
P

6∑
k=1

Ck

(
1− cos

(
ka−√

2f

))
,

where Ck are given in terms of Ai (i=1-3). One has a linear combination of six
cosine terms and their superposition makes the model very different from the
natural inflation model.

r vs ns fe vs f
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Supersymmetric Dirac-Born-Infeld models

Example of a simple non-supersymmetric DBI action is

LDBI = −
1

f

√
1 + f∂µφ∂νφ)− V (φ)

Early work on supersymmetric DBI model with single field was done by Rocek (1997),
Tseytlin (1999), Sasaki, Yamaguchi, Yokoyama (2012). Here we consider a two field
supersymmetric DBI model with fields (Φ1,Φ2) model13

L = LD + LF , where

LD =

∫
d4θ

(
Φ1Φ

†
1 + Φ2Φ

†
2

)
,

+

∫
d4θ

α1

16T
(DαΦ1DαΦ1)

(
D
α̇

Φ
†
1Dα̇Φ

†
1

)
G(φ)

+

∫
d4θ

α1

16T
(DαΦ2DαΦ2)

(
D
α̇

Φ
†
2Dα̇Φ

†
2

)
G(φ)

G(φ) =
1

T

1

1 +A+
√

(1 +A)2 −B

where T is a parameter of the dimension of (mass)4 .

A = (∂aφ1∂
aφ∗1 + ∂aφ2∂

aφ∗2)/T

B = α1(∂aφ1∂
aφ1∂bφ

∗
1∂
bφ∗1 + ∂aφ2∂

aφ2∂bφ
∗
2∂
bφ∗2)/T 2

13PN, M. Piskunov, JHEP 1902, 034 (2019) [arXiv:1807.02549 [hep-ph]].
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F-equations

F 3
k + pkFk + qk = 0 , k = 1, 2 ,

where pk, qk are defined by

pk =

(
∂W

∂ϕk

)−1 ∂W

∂ϕk

1− 2G (ϕ) ∂µϕk∂
µϕk

2G (ϕ)

qk =
1

2G (ϕ)

(
∂W

∂ϕk

)−1(∂W
∂ϕk

)2

Since Fk satisfies a cubic equation, there are three roots which are given by

Fk =ωj

(
−
qk

2
+

√(qk
2

)2
+
(pk

3

)3
)1/3

+ ω3−j

(
−
qk

2
−
√(qk

2

)2
+
(pk

3

)3
)1/3

.

where ω is the cube root of unity and j = 0, 1, 2. Physical root is j = 0.
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SUSY DBI 14

L = (
∂W

∂ϕi
Fi + h.c.) + T − T

√
(1 +A)2 −B

+
2∑
i=1

[
FiF
∗
i + αG(φ)

[
(−2FiF

∗
i ∂aφi∂

aφ∗i + F 2
i F
∗2
i ))

]]

Slow roll parameters for DBI (Maldacena 2002, Seery 2005, Chen et al 2005, Lyth
2005)

εH = −
Ḣ

H2
, ηH =

ε̇H

εHH
, sH =

ċs

csH
. (4)

Further, the spectral indices ns, nt in this case are given by

ns = 1− 2εH − ηH − sH ,

nt = −2εH , r = −8csnt . (5)

Cs is the speed of sound in the medium.

14PN, M. Piskunov, arXiv:1906.02764 [hep-ph].
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Explicit form of DBI Lagrangian

L = LI + LII . (6)

LI is given by

LI = T

1−

√√√√
1−

ȧ2
−

T
+

(2− α1) ȧ4
−

8T2

 . (7)

LII is more complicated:

LII = T

2F2
+ + 2F2

− −
4

3α1

T + (α1 − 1)
ȧ2
−

4T

+ 4k
(
F+ + F−

)

+
α1

T − ȧ2
−/ (4T )

2

F2
+ + F2

− −
2

3α1

T + (α1 − 1)
ȧ2
−

4T

 ȧ2
−

4T
+ F4

+ + F4
−

+
2

3α2
1

T + (α1 − 1)
ȧ2
−

4T

2

−
4

3α1

T + (α1 − 1)
ȧ2
−

4T

(F2
+ + F2

−

) ,
(8)
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where

T =
1

2

1 +

√√√√
1−

ȧ2
−

T
+

(2− α1) ȧ4
−

8T2

 , (9)

k = β̃

√√√√∑
m,n

mnGmGn

(
1− cos

(
a−m
√

2f

)
− cos

(
a−n
√

2f

)
+ cos

(
a− (m− n)
√

2f

))
, (10)

F± = ±

∓ 1

2α1
k

T − ȧ2
−

4T

+

√√√√√ 1

4α2
1

k2

T − ȧ2
−

4T

2

+
1

27α3
1

T + (α1 − 1)
ȧ2
−

4T

3


1/3

,

(11)

Gk =
Ak21/2(1−k)

β̃
√
Tf1−k

. (12)

Here β̃ is an arbitrary dimensionless parameter which we choose such that Gk ∼ 1, and which determines the
scale of symmetry breaking terms relative to T .

27/35



Friedman equations for DBI

3M2
P

Ṙ2

R2
= 2ȧ2

−
∂L

∂ȧ2
−
− L.

2

[
2

∂2L

∂ȧ2
−∂ȧ

2
−
ȧ2
− +

∂L

∂ȧ2
−

]
ä− −

∂L

∂a−
+ 6Hȧ−

∂L

∂ȧ2
−

+2
∂2L

∂a−∂ȧ
2
−
ȧ2
− = 0

The potential does not enter by itself, and it is the Lagrangian that
governs the Friedman equations.

Approximations one uses in flat potential models are not possible
here. Analysis of DBI requires numerical simulations.
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Result of numerical simulations15

15PN, M. Piskunov, JHEP 1902, 034 (2019) [arXiv:1807.02549 [hep-ph]].
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The theoretical upper limit on r in single field inflation for
flat potentials

For flat potentials slow roll gives

N = −
1

M2
P l

∫
V (φ)

V ′(φ)
dφ ∼ −

∆φ

MP l

√
2ε

r ∼
8(∆φ)2

M2
P lN

2

For ∆φ/MP l < 1 and N = [50− 60]

r < 0.003 . (13)

Thus we find that the theoretical upper limit on r in single field
inflation for flat potentials is O(10−3).
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r in DBI

For DBI the density governs the slow-roll and not the potential,
i.e.,

r = −
8

ρ

dρ

dN
.

r can be as large as the current experimental limit of r = 0.064 if
the slope dρ/dN is large.
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The slope dρ/dN determines the size of r.

ρ/ρ0 for a flat potential
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Summary

• Axion inflation with N = [50− 60] and (ns, r) in the blue
region of Planck data can be achieved with sub-Planckian decay
constant consistent with WGC.

SUSY-flat potential SUSY- DBI
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r

• DBI allows for much larger values of r than the ones in flat
potential for single field inflation.
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