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5 The swampland

An attempt to propose an alternative to the string theory landscape was recently made by
Ooguri, Vafa et al. in [21]. The authors have suggested two new conjectures:

1. The first one is a no-dS conjecture, stating that a consistent theory of quantum gravity
based on string theory cannot describe stable or metastable dS spaces. This conjecture
has been based on various arguments and no-go theorems discussed in [21, 24, 25]. We
gave a critical discussion of these arguments in the previous section, and will return to
it in Appendix A.

2. A stronger version of this conjecture is that the scalar field potential for all consistent
theories should satisfy the constraint

|r�V |

V
� c , c ⇠ 1 . (5.1)

Even though these two conjectures are related, they are partially independent. In particular,
the first no-dS conjecture does not require c ⇠ 1. We analyze both of these conjectures in the
present paper, as well as the proposal made in [21] for replacing the cosmological constant by
string theory quintessence.

The authors of [21] have been very careful in expressing their own opinion on these
conjectures. For example, in the beginning of his talk at Strings 2018, Vafa repeated, three
times, that this was just a speculation, but argued that it would be interesting to entertain it
nevertheless, having in mind its possible cosmological implications.

The motivation for the conjecture (5.1) has been explained as follows: If we assume that
dS states are impossible in string theory, what could we offer as an alternative explanation for
the present stage of cosmic acceleration? An often discussed possibility is that dark energy is
represented by the potential of a quintessence field. Its present value should be V ⇠ O(10�120),
which represents an enormous fine-tuning. This is one of the problems addressed in the context
of the string theory landscape. In the theory of quintessence, this problem remained unsolved.
In fact, this theory requires double fine-tuning: in addition to the fine-tuning V ⇠ O(10�120),
one should also have |r�V | . V ⇠ O(10�120).

One could hope that it would be possible to reduce this double fine-tuning to the single
fine-tuning V ⇠ O(10�120) by making a conjecture that it is required to have |r�V | � cV
with c ⇠ 1. But this conjecture does not help to explain why V ⇠ O(10�120), and it does not
remove the second fine-tuning |r�V | . V ⇠ O(10�120). Indeed, the swampland conjecture
|r�V | � cV allows all values of |r�V | greater than O(10�120), which is the opposite of the
quintessence requirement |r�V | . V . Therefore, it seems that the main goal of proposing (5.1)
has been to provide some hypothesis formalizing the no-dS conjecture. From this perspective,
the condition c ⇠ 1 is not required, even though it is satisfied in many string theory models
discussed in [21], which is the main reason why those models are ruled out by observations, as
we show in this paper.

We explain in Sections 6, 7 and 8 why it is very difficult to overcome this problem, and
point out some other problems that may plague these models. Importantly, our conclusions do
not rely on the conjecture (5.1) with c ⇠ 1. Our results follow directly from the comparison of
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the predictions of the models derived from string theory, presented in [21], with cosmological
observations.

The conjecture (5.1) has been applied in [21] only to the fields describing quintessence.
One could extend it to include the Standard Model [71], inflation, etc., but such generalizations
would disfavor this conjecture even more strongly. For example, the expression for the tensor
to scalar ratio r = 8(V,�/V )2, which is satisfied in the vast majority of inflationary models,
in combination with the latest observational data [72] implies that during inflation one has
|r�V |/V < 0.09. An analysis of related issues in [22, 73] gives similar constraints on c. The
constraint |r�V |/V < 0.09 strongly disfavors the original conjecture (5.1) with c & 1, if
applied to inflation.

However, as we have already mentioned, if the main motivation for the conjecture (5.1)
has been to give a formal representation for the no-dS conjecture and possibly reduce the
degree of fine-tuning in the quintessence theory, then there is no obvious reason to require
c & 1.

Moreover, there is no reason to apply this conjecture to inflationary models. Indeed,
unlike the old inflationary scenario [74], which assumed that inflation occurs in a metastable
dS space, all realistic inflationary models are based on the slow-roll mechanism [75, 76]. The
amplitude of inflationary perturbations in these models is inversely proportional to |r�V |, so
their predictions are well defined only sufficiently far away from the dS regime. Inflationary
perturbations are small as long as |r�V | & V 3/2 [77, 78], and they are small enough to match
the observational data if |r�V | & 105 V 3/2 [72]. This ensures that the no-dS requirement is
satisfied automatically in all slow-roll inflationary models matching the observational data
[72]. An additional unmotivated constraint on inflation of the type (5.1) would not serve
any obvious purpose. Therefore, in this paper we disregard any potential implications of the
conjecture (5.1) for inflation, or any arguments against the swampland conjecture (5.1) based
on inflation, and, following [21], we concentrate on the theory of dark energy/quintessence.

6 Dark energy and the cosmological data

Before we continue with the implications of the swampland conjecture (5.1) in the context of
dark energy, let us investigate the current observational constraints on dark energy models
relevant for our discussions. Particularly, in this section we focus on the ‘vanilla’ exponential
quintessence model with a potential of the form

V (�) = V0 e
��, (6.1)

where � > 0 is a dimensionless constant. By changing the sign of � (i.e. � ! ��), one can
equivalently represent this potential as V0 e���.

This potential is interesting for two reasons. Firstly, as we see in the next sections, all the
string theory based models that we consider in this paper predict a simple exponential potential
or a combination of two exponentials. Additionally, as discussed in [22], this exponential
potential with a constant � is the least constrained form of a quintessence potential, and by
constraining it we automatically constrain more sophisticated potentials with �-dependent �.
It is also interesting to note that a constant � is the solution to V,�/V = c (with c = �); cf.
the swampland conjecture (5.1) for a single field �. Even though in string theory constructions
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2) Potentials in string theory should satisfy the swampland conjecture

Example of a “legitimate” potential

with � > 1
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Note that the sign of the inequality is OPPOSITE to the one required 
for successful dark energy models. 

1) dS is incompatible with string theory (see also Vafa’s lectures 
and a review by Daniellson and Van Riet)

Why no dS?      Why large slope of V?
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We study the arguments given in [1] which suggest that the uplifting procedure in the KKLT
construction is not valid. First we show that the modification of the SUSY breaking sector of the
nilpotent superfield, as proposed in [1], is not consistent with non-linearly realized local supersym-
metry of de Sitter supergravity. Keeping this issue aside, we also show that the corresponding
bosonic potential does actually describe de Sitter uplifting.

I. INTRODUCTION

The quest for four-dimensional de Sitter solutions to
ten-dimensional string theory is a long-standing problem
in high-energy theoretical physics. While many propos-
als exist [2, 3], this continues to be a subject of some de-
bate. In [4] it was argued that this task can be reduced to
the identification of the correct four-dimensional e↵ective
field theory, while compatibility with known approaches
to the stabilization of string theory moduli [2, 3, 5] de-
mands the use of supergravity. One is then naturally led
to the study of de Sitter solutions to N = 1 d = 4 su-
pergravity as a proxy for de Sitter solutions in full string
theory.

One of the known examples of de Sitter (dS) in string
theory is the KKLT construction [2] where the ‘uplift’
from AdS to dS is provided by an anti-D3 brane. In the
language of a 4d e↵ective action, it has been argued [6, 7]
that this scenario can be described by1

K = �3 log
�
T + T̄

�
+ SS̄ ,

W = W0 +A exp(�aT ) + b S ,
(1)

where T is the volume Kähler modulus and S is a nilpo-
tent chiral superfield (i.e. S2 = 0). The S multiplet con-
tains no fundamental scalar and its single degree of free-
dom may be identified with an D3 worldvolume fermion
[6, 7]. Its fundamental role in the construction of cosmo-
logical models with positive vacuum energies has been
repeatedly pointed out and extensively investigated (see
e.g. [8–15]). Furthermore, the coe�cient b encodes im-
portant information of the D3 brane and it is often rep-
resented as b ⌘ e2A0µ2, where eA0 ⌧ 1 is the warp factor
at the tip of the throat and µ is related to the unwarped
tension of the anti-brane as |µ4| ⇠ T3.
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1 The “warped” case K = �3 log

�
T + T̄ � SS̄

�
gives a di↵erent

T -dependence in the uplifting term and very little changes in
terms of the conclusions of the present paper.

It has been recently suggested in [1] that a 10d analysis
might reveal backreaction issues, which would ultimately
spoil the possibility of realizing a positive cosmological
constant in the KKLT construction. In the same article,
the authors speculate that a 4d signal of this situation
might be found in a coupling between the fields T and S.

While this coupling is absent in the original KKLT pro-
posal, the proposed reason to consider it was a similarity
to the case of D3 branes. It was suggested in [16] that
the coe�cient of the non-perturbative superpotential A
might have a dependence on the modulus � describing a
position of the D3 brane, so that A = A(�). Based on
this analogy, the authors of [1] suggested that one can
expect a dependence on the D3 brane so that A becomes
replaced by A + cS. The resulting e↵ective d=4 super-
gravity theory is of the following form

K = �3 log
�
T + T̄ � SS̄

�
,

W = W0 +A(1 + c S) exp(�aT ) + b S ,
(2)

where higher order terms in S vanish identically because
of the assumed nilpotency condition. The coe�cient c
was suggested to be viewed as some function of the anti-
brane tension.

It was argued in [1] that we do not know much about
the value of the parameter c and one may expect it to
be O(1), whereas b is suppressed by a warping factor.
Given this hierarchy b ⌧ Ac, it was assumed that one
can e↵ectively ignore b in investigations of the KKLT
uplifting. Then, one can show that taking b = 0 does not
lead to a dS vacuum state, for any value of c.

However, before studying the consequences of this as-
sumption, we would like to notice immediately that the
argument that b ⌧ Ac because c is not suppressed by
the warping factor e2A0 ⌧ 1 seems not well motivated.
Indeed, consider the limiting case of super-strong warp-
ing, which describes the limit b ! 0, for fixed value of T3.
In this limit, the e↵ective D3 brane stress tensor, as seen
from the bulk, vanishes and, therefore, cannot cause any
backreaction. In other words, one may expect that in
this limit the term AcS exp(�aT ) also must disappear.
This suggests that the backreaction coe�cient c should
be also suppressed by the warping factor e2A0 ⌧ 1, which
makes the assumption b ⌧ Ac unwarranted.

2

form W = W0 + Ae−aρ and with the Kähler potential
K = −3 ln[ρ+ρ] provide the AdS minima for the volume
modulus ρ = σ + iα at finite, moderately large values
of volume. When this potential is supplemented by a
D-type contribution C

σ2 from D3 brane [5] or D7 branes
[16], one finds a de Sitter minimum. This simplest KKLT
model has a minimum at some real value of the field ρ:
ρ = σ, α = 0. This minimum is separated from the
Minkowski vacuum of Dine-Seiberg type at infinite vol-
ume of the internal space by a barrier, which makes the de
Sitter minimum metastable with the lifetime t ∼ 1010120

years.
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FIG. 1: Thin green line corresponds to AdS stabilized poten-
tial for W0 = −10−4, A = 1, a = 0.1. Dashed line shows
the additional term C

σ2 , which appears either due to the con-

tribution of a D3 brane or of a D7 brane. Thick black line
shows the resulting potential including the C

σ2 correction with

C = 2.6×10−11, which uplifts the AdS minimum to a dS min-
imum. All potentials are shown multiplied by 1015.

Since DiW = 0 in the AdS minimum, its depth is given
by

VAdS = − 3eK |W |2 . (1)

Here all functions are calculated at σ = σcr, where σcr is
the position of the minimum of the potential prior to the
uplifting. We use the units where M2

P = (8πGN )−1 = 1.

Before the uplifting, the potential has only one ex-
tremum, at σ = σcr, and its absolute value exponentially
decreases at σ ≫ σcr. When we add the term C

σ2 , the
minimum shifts upward in such a way that the new dS
minimum is positioned at σ0 ≈ σcr. This means that the
values of the function eK(σ)|W (σ)|2 in the minimum of
the effective potential remain almost unchanged during
the uplifting. Meanwhile, the value of DiW (σ) in the
minimum after the uplifting is no longer equal to zero,
but it still remains relatively small, DiW (σ0) ≪ W (σ0).
At the dS minimum, the total effective potential must
vanish, with the accuracy of 10−120. Therefore one has
C
σ2

0

≈ −VAdS = 3eK |W |2.

The gravitino mass in the uplifted dS minimum is given

by

m2
3/2(σ0) = eK(σ0)|W (σ0)|2 ≈ eK(σcr)|W (σcr)|2 =

VAdS

3
.

(2)

The gravitino mass can be associated with the strength
of supersymmetry breaking at the minimum where the
total potential is approximately vanishing. Indeed,

VKKLT(σ0) = VF + VD = |F |2 − 3m2
3/2 +

1

2
D2 ≈ 0 . (3)

This yields

3m2
3/2 ≈

1

2
D2 + |F |2 . (4)

Now let us discuss the height of the barrier VB which
stabilizes dS state after the uplifting. Since the uplifting
is achieved by adding a slowly decreasing function C/σ2

to a potential which rapidly approaches zero at large σ,
the height of the barrier VB is approximately equal (up
to a factor O(1)) to the depth of the AdS minimum VAdS,
see Fig. 1:

VB ∼ |VAdS| ∼ m2
3/2 . (5)

To complete the list of important features of this
model, let us remember what should be done to use it
for the description of inflation.

The simplest possibility would be to use the extremum
of the potential of the height VB as an initial point for
inflation. A particular realization of this scenario was
proposed in [17]. (In order to do it, it was necessary to
consider a racetrack superpotential with two exponents).
In this case one has an interesting relation between var-
ious parameters of our model and the Hubble constant
during inflation:

H2 ≈ VB/3 ∼ |VAdS|/3 ∼ m2
3/2 . (6)

One may also achieve inflation by considering dynam-
ics of branes in the compactified space. This involves a
second uplifting, which corresponds to a nearly dS (infla-
tionary) potential added to the KKLT potential VKKLT ,
for example in D3/D7 case [18]. The added potential
should be flat in the inflaton direction, and, according to
[18], it has a σ−3 dependence on the volume modulus:

V infl
tot ≈ VKKLT (σ) +

V (φ)

σ3
. (7)

Here φ is an inflaton field. The resulting potential as a
function of σ is schematically shown in Fig. 2 for different
values of the function V (φ). It is apparent from this
figure that the vacuum stabilization is possible in this
model only for sufficiently small values of the inflaton
potential,

V infl
tot

<∼ c VB ∼ c |VAdS| ∼ c m2
3/2 , (8)

S is the nilpotent field describing uplifting due to the anti-D3 brane
Kallosh, AL, Vercnocke, Wrase 2014
Ferrara, Kallosh, AL 2014
Kallosh, Wrase 2014
Bergshoeff, Dasgupta, Kallosh, Van Proeyen, Wrase 2015

Kachru, Kallosh, AL, Trivedi 2003



One of the main papers supporting the swampland conjecture 
was 1707.08678 by Westphal et al suggesting that the 
uplifting procedure in the KKLT construction is not valid. 

We found that the modification of the SUSY breaking sector 
of the nilpotent superfield proposed in 1707.08678 is not 
consistent with non-linearly realized local supersymmetry of 
de Sitter supergravity. 

Keeping this issue aside, we found that the corresponding 
bosonic potential does actually describe de Sitter uplifting.
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IV. NEW FEATURES IN THE LANDSCAPE:

SUPERSYMMETRIC MINKOWSKI VACUA AND

LIGHT GRAVITINO

The problems discussed above are related to the fact
that the simplest KKLT potential has only one minimum,
and this minimum occurs at large negative values of the
effective potential. Therefore we will look for a possibil-
ity to stabilize the volume modulus in a supersymmet-
ric Minkowski minimum. We perform an analysis of the
vacuum structure2 keeping the tree-level Kähler poten-
tial K = −3 ln[(ρ + ρ)] and a racetrack superpotential
similar to the one recently used in the racetrack inflation
scenario [17]

W = W0 + Ae−aρ + Be−bρ . (10)

Here W0 is a tree level contribution which arises from the
fluxes. The exponential terms arise either from Euclidean
D3 branes of from gaugino condensation on D7 branes,
as explained in [5, 17].

At a supersymmetric vacuum DρW = 0. The super-
symmetric Minkowski minimum then lies at

W (σcr) = 0 , DW (σcr) = 0 . (11)

As in KKLT, we simplify things by setting the imaginary
part of the ρ modulus (the axion field α) to zero, and
letting ρ = ρ = σ. (Even though in some models the
condition α = 0 is not satisfied at the minimum of V (ρ)
[17], we have verified that it is satisfied in the model
which we are going to propose; see Fig. 4.) In addition
we take A, a, B, b and W0 to be all real and the sign of
A and B opposite.

We find a simple relation between the critical value of
the volume modulus and parameters of the superpoten-
tial

σcr =
1

a − b
ln

∣

∣

∣

∣

a A

b B

∣

∣

∣

∣

. (12)

Equations (11) require also a particular relation between
the parameters of the superpotential:

−W0 = A

∣

∣

∣

∣

a A

b B

∣
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∣
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a

b−a

+ B

∣
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∣

a A

b B

∣

∣

∣

∣

b

b−a

(13)

Note that only solutions with non-vanishing value of W0

are possible in this model; these solutions disappear if we
put A or B equal to zero, as in the original version of the
KKLT model.

The potential, V = eK
(

GρρDρWDρW − 3|W |2
)

, as
the function of the real field ρ = ρ = σ is given by

V = −
e−2(a+b)σ

6σ2
(bBeaσaA + ebσ)

×
[

Beaσ(3 + bσ) + ebσ(A(3 + aσ) + 3eaσW0)
]

(14)

2 We performed the calculations and we plot the corresponding
potentials using the “SuperCosmology” code [29].

It vanishes at the minimum which corresponds to
Minkowski space:

VMink(σcr) = 0 ,
∂V

∂σ
(σcr) = 0 . (15)

Thus it is possible to stabilize the volume modulus while
preserving Minkowski supersymmetry. The gravitino
mass in this minimum vanishes.

An example of the model where the vacuum stabiliza-
tion occurs in the supersymmetric Minkowski vacuum is
given by the theory with the superpotential (10) with
A = 1, B = −1.03, a = 2π/100, b = 2π/99, W0 =
2× 10−4. None of these parameters is anomalously large
or small; they are of the same order as the parameters
used in [5]. The resulting potential is shown in Figs. 3
and 4. The vacuum stabilization occurs at σ ≈ 62 ≫ 1,
which suggests that the effective 4D supergravity ap-
proach used in our calculations should be valid.
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FIG. 3: The F-term potential (14), multiplied by 1014, for the
values of the parameters A = 1, B = −1.03, a = 2π/100, b =
2π/99, W0 = 2 × 10−4. A Minkowski minimum at V = 0
stabilizes the volume at σcr ≈ 62. AdS vacuum at V < 0
stabilizes the volume at σcr ≈ 106. There is a barrier pro-
tecting the Minkowski minimum. The height of the barrier is
not correlated with the gravitino mass, which vanishes if the
system is trapped in Minkowski vacuum.

We have found the supersymmetric Minkowski vacuum
prior to adding any nonperturbative terms ∼ C/σ2 re-
lated to D3 brane or D7 branes. We assume, as usual,
that by changing the parameters and by adding the term
C/σ2 one can fine-tune the value of the potential in its
minimum to be equal to the observed small constant
Λ ∼ 10−120. What is important for us is that in the first
approximation one can make the gravitino mass vanish
as compared to all other parameters of the superpoten-
tial. As a result, the value of m3/2 in our model does
not have any relation to the height of the potential, and,
correspondingly, to the Hubble constant during inflation.

An important property of our Minkowski (or near-
Minkowski) vacuum, as well as the dS vacuum obtained
by its uplifting, is that the gravitino mass vanishes (or
nearly vanishes) only in its vicinity. Similarly, restora-
tion of supersymmetry in this minimum implies that all
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FIG. 3: The F-term potential (14), multiplied by 1014, for the
values of the parameters A = 1, B = −1.03, a = 2π/100, b =
2π/99, W0 = 2 × 10−4. A Minkowski minimum at V = 0
stabilizes the volume at σcr ≈ 62. AdS vacuum at V < 0
stabilizes the volume at σcr ≈ 106. There is a barrier pro-
tecting the Minkowski minimum. The height of the barrier is
not correlated with the gravitino mass, which vanishes if the
system is trapped in Minkowski vacuum.
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FIG. 3: The F-term potential (14), multiplied by 1014, for the
values of the parameters A = 1, B = −1.03, a = 2π/100, b =
2π/99, W0 = 2 × 10−4. A Minkowski minimum at V = 0
stabilizes the volume at σcr ≈ 62. AdS vacuum at V < 0
stabilizes the volume at σcr ≈ 106. There is a barrier pro-
tecting the Minkowski minimum. The height of the barrier is
not correlated with the gravitino mass, which vanishes if the
system is trapped in Minkowski vacuum.

We have found the supersymmetric Minkowski vacuum
prior to adding any nonperturbative terms ∼ C/σ2 re-
lated to D3 brane or D7 branes. We assume, as usual,
that by changing the parameters and by adding the term
C/σ2 one can fine-tune the value of the potential in its
minimum to be equal to the observed small constant
Λ ∼ 10−120. What is important for us is that in the first
approximation one can make the gravitino mass vanish
as compared to all other parameters of the superpoten-
tial. As a result, the value of m3/2 in our model does
not have any relation to the height of the potential, and,
correspondingly, to the Hubble constant during inflation.

An important property of our Minkowski (or near-
Minkowski) vacuum, as well as the dS vacuum obtained
by its uplifting, is that the gravitino mass vanishes (or
nearly vanishes) only in its vicinity. Similarly, restora-
tion of supersymmetry in this minimum implies that all

The minimum for b = 0 is at V=0. By a different choice of W0 and b, the 
potential at the minimum can take any value. Only extremely small uplift is 
required. The height of the barrier is not related to SUSY breaking, so the 
moduli can be stabilized with arbitrary strength.
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KL version of the KKLT scenario does not have any problems with 
uplifting, but Moritz and Van Riet in 1805.00944 argued that it 
might violate the weak gravity conjecture. 

We found in 1901.02022 that KL mechanism is consistent with 
the WGC.
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In all models of superstring quintessence proposed there l > 1.4. 
We found that l > 1 is ruled out with confidence level better than 
99.7%, and l > 1.4 is ruled out even much stronger.

And there are many conceptual issues, such as quantum corrections 
for extremely flat potentials, fifth force problem, decompactification
of 6 dimensions, etc. For example, in the first of the models proposed 
by Obied et al the internal space completely decompactifies, in the 
second model, its volume grows by 180 orders of magnitude during the 
cosmological evolution.

Yashar Akrami, Renata Kallosh, AL, Valeri Vardanyan, 1808.09440

the predictions of the models derived from string theory, presented in [21], with cosmological
observations.

The conjecture (5.1) has been applied in [21] only to the fields describing quintessence.
One could extend it to include the Standard Model [71], inflation, etc., but such generalizations
would disfavor this conjecture even more strongly. For example, the expression for the tensor
to scalar ratio r = 8(V,�/V )2, which is satisfied in the vast majority of inflationary models,
in combination with the latest observational data [72] implies that during inflation one has
|r�V |/V < 0.09. An analysis of related issues in [22, 73] gives similar constraints on c. The
constraint |r�V |/V < 0.09 strongly disfavors the original conjecture (5.1) with c & 1, if
applied to inflation.

However, as we have already mentioned, if the main motivation for the conjecture (5.1)
has been to give a formal representation for the no-dS conjecture and possibly reduce the
degree of fine-tuning in the quintessence theory, then there is no obvious reason to require
c & 1.

Moreover, there is no reason to apply this conjecture to inflationary models. Indeed,
unlike the old inflationary scenario [74], which assumed that inflation occurs in a metastable
dS space, all realistic inflationary models are based on the slow-roll mechanism [75, 76]. The
amplitude of inflationary perturbations in these models is inversely proportional to |r�V |, so
their predictions are well defined only sufficiently far away from the dS regime. Inflationary
perturbations are small as long as |r�V | & V 3/2 [77, 78], and they are small enough to match
the observational data if |r�V | & 105 V 3/2 [72]. This ensures that the no-dS requirement is
satisfied automatically in all slow-roll inflationary models matching the observational data
[72]. An additional unmotivated constraint on inflation of the type (5.1) would not serve
any obvious purpose. Therefore, in this paper we disregard any potential implications of the
conjecture (5.1) for inflation, or any arguments against the swampland conjecture (5.1) based
on inflation, and, following [21], we concentrate on the theory of dark energy/quintessence.

6 Dark energy and the cosmological data

Before we continue with the implications of the swampland conjecture (5.1) in the context of
dark energy, let us investigate the current observational constraints on dark energy models
relevant for our discussions. Particularly, in this section we focus on the ‘vanilla’ exponential
quintessence model with a potential of the form

V (�) = V0 e
��, (6.1)

where � > 0 is a dimensionless constant. By changing the sign of � (i.e. � ! ��), one can
equivalently represent this potential as V0 e���.

This potential is interesting for two reasons. Firstly, as we see in the next sections, all the
string theory based models that we consider in this paper predict a simple exponential potential
or a combination of two exponentials. Additionally, as discussed in [22], this exponential
potential with a constant � is the least constrained form of a quintessence potential, and by
constraining it we automatically constrain more sophisticated potentials with �-dependent �.
It is also interesting to note that a constant � is the solution to V,�/V = c (with c = �); cf.
the swampland conjecture (5.1) for a single field �. Even though in string theory constructions
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Planned cosmological observations such as CMB-S4, 
Simons Observatory, LiteBird, PICO are supposed to 
search for r ~ 10-2 - 10-3. If the tensor modes are not 
found in this range, this may imply that

c < 10-2

Any constraints from inflation?



Is  c = 10-1 = O(1)?

Is  10-2 = O(1)?

The answer of the authors of the swampland conjecture:

10-10 is not O(1)



This would strongly contradict the weak gravity conjecture. If only the 
Planck excursions O(1) are allowed, then the quintessence potential 
can be valid only for V =O(10-120). How can we use such a theory in 
cosmology?

�� ⇠ 400
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Consider exponential potential with l =0.7 (all higher values are ruled 
out with 95% confidence). How large should the excursion of the field 
be to span the distance between the Planck density V =O(1) and the 
present value of dark energy V =O(10-120) = e-276



Before quantum corrections After quantum corrections

Anthropic approach to L in string theory

Anthropic range
10-120

-10-120





2) The universe is flat, W = 1. (In the mid-90’s, the consensus was that  
W = 0.3, until the discovery of dark energy, confirming inflation.)  

3) The observable part of the universe is uniform (homogeneous). 

4) It is isotropic. In particular, it does not rotate. (Back in the 80’s we 
did not know that it is uniform and isotropic at such an incredible level.)

5) Perturbations produced by inflation are adiabatic

6) Unlike perturbations produced by cosmic strings, inflationary 
perturbations lead to many peaks in the spectrum 

1) In the early 80’s it seemed that inflation is ruled out because 
inflationary perturbations are not observed at the expected level 10-3.  
The problem disappeared thanks to dark matter.



8) Inflationary perturbations should have a nearly flat, but not exactly 
flat spectrum. A small deviation from flatness is one of the 
distinguishing features of inflation. It is as significant for inflationary 
theory as the asymptotic freedom for the theory of strong interactions

9) Inflation produces scalar perturbations, but it also produces tensor 
perturbations with nearly flat spectrum, and it does not produce vector 
perturbations (matches observations). There are certain relations 
between the properties of scalar and tensor perturbations

10) Scalar perturbations are Gaussian. In non-inflationary models, the 
parameter fNL

local describing the level of local non-Gaussianity can be as 
large as 104, but it is predicted to be O(1) in all single-field inflationary 
models. Prior to the Planck2013 data release, there were rumors that 
fNL

local >> O(1), which would rule out all single field inflationary models 

7) The large angle TE anti-correlation (WMAP, Planck) is a distinctive 
signature of superhorizon fluctuations (Spergel, Zaldarriaga 1997), 
ruling out many alternative possibilities



Planck Collaboration: Constraints on Inflation

Fig. 7. Marginalized joint two-dimensional 68 % and 95 % CL regions for combinations of (✏1 , ✏2 , ✏3) (upper panels) and (✏V , ⌘V , ⇠2V )
(lower panels) for Planck TT,TE,EE+lowE+lensing (red contours), compared with Planck TT,TE,EE+lowE+lensing+BK14 (blue
contours).
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Natural inflation ⇤4 ⇥1 + cos (�/ f )

⇤
0.3 < log10( f /MPl) < 2.5 9.4 �4.2

Hilltop quadratic model ⇤4
⇣
1 � �2/µ2

2 + . . .
⌘

0.3 < log10(µ2/MPl) < 4.85 1.7 �2.0

Hilltop quartic model ⇤4
⇣
1 � �4/µ4

4 + . . .
⌘

�2 < log10(µ4/MPl) < 2 �0.3 �1.4

D-brane inflation (p = 2) ⇤4
⇣
1 � µ2

D 2/�
p + . . .

⌘
�6 < log10(µD 2/MPl) < 0.3 �2.3 1.6

D-brane inflation (p = 4) ⇤4
⇣
1 � µ4

D 4/�
p + . . .

⌘
�6 < log10(µD 4/MPl) < 0.3 �2.2 0.8

Potential with exponential tails ⇤4 ⇥1 � exp (�q�/MPl) + . . .
⇤

�3 < log10 q < 3 �0.5 �1.0
Spontaneously broken SUSY ⇤4 ⇥1 + ↵h log (�/MPl) + . . .

⇤
�2.5 < log10 ↵h < 1 9.0 �5.0

E-model (n = 1) ⇤4
(

1 � exp
"
�
p

2�
✓q

3↵E
1 MPl

◆�1#)2n

�2 < log10 ↵
E
1 < 4 0.2 �1.0

E-model (n = 2) ⇤4
(

1 � exp
"
�
p

2�
✓q

3↵E
2 MPl

◆�1#)2n

�2 < log10 ↵
E
2 < 4 �0.1 0.7

T-model (m = 1) ⇤4 tanh2m
"
�
✓q

6↵T
1 MPl

◆�1#
�2 < log10 ↵

T
1 < 4 �0.1 0.1

T-model (m = 2) ⇤4 tanh2m
"
�
✓q

6↵T
2 MPl

◆�1#
�2 < log10 ↵

T
2 < 4 �0.4 0.1

Table 5. Bayesian comparison for a selection of slow-roll inflationary models with wint fixed (see text for more details). We quote
0.3 as the error on the Bayes factor. Models are strongly disfavoured when ln B < �5.
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Start with the simplest chaotic inflation model

Modify its kinetic term

Switch to canonical variables � =
p
6↵ tanh

'p
6↵

The potential becomes

V = 3↵m2 tanh2
'p
6↵
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�g
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2
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2. TOY MODELS OF ↵-ATTRACTORS

The bosonic T-model corresponding to Fig. 1 in a form
familiar to cosmologists is

1p
�g

LT =
1

2
R � 1

2

@�2

(1 � �2

6↵ )2
� 1

2
m2�2 , (2.1)

see for example [9], eq. (1.1). Here �(x) is the scalar field, the
inflaton, ↵ can take any positive value, and �2 < 6↵, so that
the sign of the inflaton kinetic term is positive. The kinetic
term of the inflaton is not canonical and has a geometric
origin associated with a moduli space geometry. At ↵ ! 1
this is the simple chaotic inflation model with a quadratic
potential for a canonical field. At present the �2 model of
inflation is disfavored by the data, which implies that the
moduli space is not flat.

For any finite ↵ one can solve equation @�

1��2

6↵

= @', which

yields � =
p

6↵ tanh 'p
6↵

. The boundary of the moduli

space � = ±
p

6↵ becomes ±1 in terms of the canoni-
cally normalized field ', and the quadratic potential be-
comes V = 3↵m2 tanh2 'p

6↵
. We called such ↵-attractors

T-models: their potentials depend on tanh2 'p
6↵

, they are

symmetric with respect to the change ' ! �' and look like
letter T [3]. All potentials V (�2) belong to the general class
of T-models, which includes the GL model [7], which was
the first implementation of chaotic inflation in supergravity,
with ↵ = 1/9 and V (�) ⇠ �2(1 � 3

8�2).

FIG. 4. Blue, brown and green lines show the potentials of the T-

models with V ⇠ tanh
2 'p

6↵
for ↵ = 1, 2, 3 correspondingly. The red

line in the center shows the potential of the GL model [7].

The bosonic E-model corresponding to Fig. 2 is

1p
�g

LE =
1

2
R � 1

2

@�2

(1 � �2

6↵ )2
� 1

2
m2 �2

(1 + �p
6↵

)2
. (2.2)

The potential of E-models has an explicit exponential de-
pendence on the canonically normalized field ', asymmetric

with respect to the change ' ! �': V ⇠ (1� e�
p

2
3↵')2.

In the special case ↵ = 1 this potential coincides with the po-
tential in the Starobinsky model [11], which represents this
model as a member of the general class of ↵-attractors.

All of these models have the same kinetic term but dif-
ferent potentials. They have two common features. First of
all, they have two attractor points, shown by the red and
blue stars in Figs. 2 and 3, describing the limiting behavior
for ↵ ! 1 and ↵ ! 0. More importantly, for su�ciently
small ↵ (i.e. in the limit when the size of the moduli space
becomes small) their cosmological predictions are very sta-
ble with respect to even very significant modifications of the
potentials.

This property was explained in [3–5], and it was formu-
lated in a particularly general way in [8]: The kinetic term
in this class of models, as well as in many other models of
cosmological attractors, has a pole near the boundary of the
moduli space. If inflation occurs in a vicinity of such a pole
(which happens for su�ciently small ↵), and the potential
near the pole can be well represented by its value and its
first derivative near the pole, all other details of the poten-
tial far away from the pole (from the boundary of the moduli
space) become unimportant for making cosmological predic-
tions. In particular, the spectral index depends solely on
the order of the pole, while the tensor-to-scalar ratio also
involves the residue [8]. All the rest is practically irrelevant,
as long as the field after inflation falls into a stable minimum
of the potential with a tiny value of the vacuum energy and
stays there.

From the point of view of a phenomenology of inflation,
everything becomes nearly trivial: Take a simple model with
a pole in the kinetic term and a potential which has a mini-
mum, and we are done, independently of many other details
of the theory, in perfect agreement with observations. But
can we do it in some models which are believed to be related
to fundamental interactions? And if the properties of the
kinetic term are so important, is it possible that this class of
models may have some interesting interpretation in terms of
geometry of the moduli space? The rest of the paper will be
dedicated to the discussion of these issues, under the guid-
ance of Poincaré and Escher, as well as of many our friends
in the supergravity/string theory community.

3. THE HYPERBOLIC PLANE H
2

The hyperbolic plane H
2 has a long history in mathemat-

ics and physics, see for example [13]. A set of user-friendly
references with pictures and applications in physics include
http://mathworld.wolfram.com/PoincareHyperbolicDisk.html
https://www.youtube.com/watch?v=JkhuMvFQWz4

The Poincaré disk model of a hyperbolic geometry is pre-
sented by the Escher’s picture Circle Limit IV, see Fig. 3.
The boundary circle (which is not part of the hyperbolic
plane) is called the absolute. One can place an infinite
amount of angels and devils, of the size which looks decreas-
ing, towards the boundary in this circle, as Escher did. How-
ever, in fact, the correct understanding of hyperbolic geom-
etry means that the angels and devils close to the boundary
are of the same ‘physical’ size as the ones near the centrum
of the circle. How do we explain this? As always in a curved

ns = 1� 2

N
, r = ↵

12

N2
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Figure 2. The same potential in terms of the canonical inflaton field ' (2.2). As we see, the shape
of the potential at � ⌧ 1 practically did not change. Meanwhile the vicinity of the boundary of the
moduli space at |�| = 1 is infinitely stretched. The height of the potential V (') at ' ! ±1 coincides
with V (�) at the boundaries of the moduli space � = ±1.

single-field inflation model I do not make any attempts to address the cosmological constant
problem, I am just assuming that it is small in one of the string theory vacua. To reflect this
assumption, I appropriately uplifted the otherwise random potential. Fortunately, due to the
magic of ↵ attractors, this uplifting does not change the predictions for ns and r.

3 Two-field ↵-attractors

Now we will generalize these results for the theory of two field inflation, � and �, with the
Lagrangian

1p
�g

L =
R

2
� (@µ�)2

2(1� �2

6↵)
2
� (@µ�)2

2
� V (�,�). (3.1)

In terms of canonical fields ' with the kinetic term (@µ')2

2 , the potential is

V (',�) = V (
p
6↵ tanh

'p
6↵

,�). (3.2)

During inflation at |'| �
p
↵, one can use the asymptotic equation

V (',�)|'|�
p
6↵ ⇡ V (�,�)�=±

p
6↵ , (3.3)

which means that asymptotically V (',�) is given by the values of the original potential
V (�,�) at the boundaries of the moduli space. The same is true for the curvature of the
potential in the � direction, i.e. for the effective mass squared of the field �, which asymp-
totically approaches a constant value [23]

V�,�(',�)|'|�
p
6↵ ⇡ V�,�(�,�)�=±

p
6↵ . (3.4)

To illustrate the implications of this result, we will consider again the case 6↵ = 1 and
generate a random potential V (�,�) of the original fields � and � in the Planck size box
1 < �,� < 1, see Fig. 3. Just as in the single field case, the potential V (�,�) shown in
Fig. 3 is very steep, so it would not support slow roll inflation if both fields were canonically
normalized. (We could always generate a smooth potential with the super-Planckian field
variations, but we want to analyze the most difficult case when the potential V (�,�) is very
steep.)
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a-attractor mechanism makes 
the potentials flat, which makes 
inflation possible, which, in its 
turn, makes the universe flat



potential used in the new inflation scenario [18]

V = V0

✓
1 +

�4

m4

�
2 log

�2

m2
� 1

�◆
. (3.1)

Later on, it became customary to consider hilltop potentials of a more general type,

V = V0

✓
1 � �n

mn
+ ...

◆
, (3.2)

where the extra terms indicated by ... are supposed to be responsible for creating a minimum
of the potential. The simplest possibility is that such terms are higher order in �n

mn . For
n = 4, this potential well represents the behavior of the Coleman-Weinberg potential near
the top of the potential. One can show that for the small field models with m ⌧ 1, inflation
occurs at � ⌧ m, where the higher order terms are negligible, and therefore some uncertainty
in the definition of the potential at � ⇠ m does not affect inflationary predictions. That is
why the calculation of ns and r in many papers on this issue, including the Planck 2018
paper on inflation [1], is performed for the simplest models

V = V0

✓
1 � �n

mn

◆
, (3.3)

ignoring the terms indicated by .... However, for m . 1, the most popular hilltop models
with n = 4 shown in Fig. 1 predict ns = 0.94 for N = 50 and ns = 0.95 for N = 60. Such
models are ruled out by observational data.

These predictions change for m & 1, but they approach safer values ns & 0.96 favored
by Planck 2018 only for m & 10. In the large m limit the green lines describing predictions of
this model in Fig. 1 converge at the red circles corresponding to the predictions of inflation
in the theory with a linear potential V ⇠ �. Moreover, a similar result is correct not only
for n = 4, but for all hilltop potentials (3.3) [24]. How can the complicated theories (3.3) in
the large m limit give the same prediction as the theory with a simple potential V ⇠ �?
What is going on?

To answer this question, let us look at the the potential (3.3), which is shown by the
green line in Fig. 3. This potential has a maximum (hilltop) at � = 0, and then V (�)

decreases and becomes zero at � = m. Because the potential does not have any minimum
at � ⇠ m, the potential at � ⇡ m can be well approximated by a straight line. This
approximation becomes better and better at large m, since the increase of m stretches the
potential horizontally. For m � 10, the last 50 e-foldings in this scenario are effectively
described by a linear potential proportional to m � �. In this sense, the name “hilltop
inflation” becomes a misnomer. The last 50 e-foldings in this scenario occur when the field
moves down from � ⇡ m � 10. The slow-roll parameter ✏ in this effective theory is given
by 1

2(m��)2 , it is smaller than 1 and inflation continues until the point m � �end ⇡ 1/
p

2.
Investigation of inflation in this scenario could suggest that its predictions provide a good
match to Planck data. But this conclusion would be premature because such models suffer
from the graceful exit problem.

– 7 –

The potential is very non-linear, but the predictions, shown by the green area, 
in the large m limit converge to the predictions of a theory with a linear 

potential, for any n.      What is going on?

RK, Linde, 1906.02156
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m . 1
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Most of the green area in the Planck figures corresponds to m > 10. 
The linear regime corresponds to m >> 10. Last stages of inflation 
occur far away from the top, at f ~ m > 10. Unspecified higher order 
terms in f/m determine everything, initial beauty is gone.

For m < 1, the hilltop inflation is an attractor: ns = 1-3/N for all m < 1. 
Nice model, for m << 1 inflation occurs at the top, at f << m. Adding 
higher order terms one can easily modify the potential without 
affecting inflation. 

But ns = 1-3/N is too small, the models with m < 1 are ruled out by 
Planck 2015 and 2018. 
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Thus, consistent models change the green area into the blue 
area or red area, change ns and significantly increase r
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Does this ad hoc handmade model have any physical motivation? 
Should we put it on the list of the best inflationary models favored 

by Planck and suggest its further exploration by CMB-S4?

m = 50

It can be done. Up and down, positive and negative, heaven and 
hell differ only by the sign. So just take the absolute value of the 

hilltop potential, make it smooth, and you will get 
the hilltop bottom



Planck 2013 version 1

Version 2, after the 
referee report…
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Science Goal

Goal is to convincingly detect r>0.003 or set an upper limit r<0.001 at 95% confidence

From Planck 2013 to PICO 2019
CMB-S4, 2016

CMB-S4, 2019

PICO 2019

Planck and BK14 data set tight constraints on α attractors (Kallosh et al. 2013; Ferrara et al. 
2013). We obtain αE1  < 32 and  αE2 < 16 at 95% CL for the E- model. We obtain slightly tighter 
95 % CL bounds for the T-model, i.e., αT1 < 12 and αT2 < 10. 

Given the relation |RK| = 2/(3α) between the curvature of the Kahler geometry RK  and α in 
some of the T-models motivated by supergravity, Planck and BK14 data imply a lower bound 
on|RK |, which is still in the low-curvature regime. The discrete set of values α = i/3 with an 
integer i in the range [1,2,3,4,5,6,7] motivated by maximal supersymmetry (Ferrara & Kallosh
2016; Kallosh, Linde, Wrase, & Yamada 2017) is compatible with the current data. 

From Planck 2018 

T

T

E

Figure 1: This Figure is taken from [16], it represents a forecast of CMB-S4 constraints in the ns � r plane

for a fiducial model with r = 0.01. Here the grey band shows predictions of the sub-class of ↵-attractor models

[2, 3, 4]. We have added to this figure a blue circle with the letter T inside it corresponding to a highest

preferred value 3↵ = 7 and the purple one corresponding to the lowest preferred value 3↵ = 1 in a seven-disk

geometry. All intermediate cases 3↵ = {1, 2, 3, 4, 5, 6, 7} are between these two. They all describe the class

of ↵-attractor models with V ⇠ tanh
2
('/

p
6↵), so-called quadratic T -models. The quadratic E-models with

V ⇠ (1 � e
p

2/3↵'
)
2
tend to be slightly to the right of the T -models, see [2]. We show them as a navy circle

with the letter E inside it.

by requiring that

3↵ = 7 : ⌧1 = ⌧2 = ⌧3 = ⌧4 = ⌧5 = ⌧6 = ⌧7 ⌘ ⌧
3↵ = 6 : ⌧1 = ⌧2 = ⌧3 = ⌧4 = ⌧5 = ⌧6 ⌘ ⌧ , ⌧7 = const
3↵ = 5 : ⌧1 = ⌧2 = ⌧3 = ⌧4 = ⌧5 ⌘ ⌧ , ⌧6 = ⌧7 = const
3↵ = 4 : ⌧1 = ⌧2 = ⌧3 = ⌧4 ⌘ ⌧ , ⌧5 = ⌧6 = ⌧7 = const
3↵ = 3 : ⌧1 = ⌧2 = ⌧3 ⌘ ⌧ , ⌧4 = ⌧5 = ⌧6 = ⌧7 = const
3↵ = 2 : ⌧1 = ⌧2 ⌘ ⌧ , ⌧3 = ⌧4 = ⌧5 = ⌧6 = ⌧7 = const
3↵ = 1 : ⌧1 ⌘ ⌧ , ⌧2 = ⌧3 = ⌧4 = ⌧5 = ⌧6 = ⌧7 = const (4.17)

We illustrate in Fig. 1 the features of ↵-attractor models [2, 3, 4] with the seven-disk geometry
using the recent discussion of B-modes in the CMB-S4 Science Book [16]. We show in Fig. 1
predictions of ↵-attractor models with seven-disk geometry in the ns � r plane for N ⇠ 55, for
the minimal value 3↵ = 1 and for the maximal value 3↵ = 7.

5 Values of 3↵ in string theory

Here we will show how to derive the 7-disk geometry (4.13) in string theory. We start with
the derivation of non-compact symmetries in string theory following [17], [18]. The toroidal

7

a

ns = 1� 2

N
, r = ↵

12

N2

CMB-S4

Seven new targets
For B-mode satellitesPlanck 2013

At the moment there are no simple, well-
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Predictions of a potential with a linear 
potential                is an attractor of hilltop
and BI models and large m
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mn
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◆�1

towardsns = 1� 2

N
ns = 1� 2

N

n+ 1

n+ 2
1� mn
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mn

improved

Hard to improve: no simple well motivated 
data-consistent hill-top model reproduces 
the green area

KKLTI
BI

V ⇠ 'n
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U-duality symmetry benchmarks for a-attractors

E7(7)(R) � [SL(2,R)]7
Special cases: 

a = 2, orange, also fibre
inflation, Cicoli et al

a = 1, blue, also Higgs, 
Starobinsky and conformal
attractors

a = 1/3, black,  also 
maximal superconformal
theory

Maximal supersymmetry



Attractor stripes at r . 10�3

Plateau potentials and the position of the 
attractor stripes at small r

asymptotic formula 
at small r for 
a-attractor models

Yellow stripe

(1� ns)|r!0 =
2

N

ns = 1� 2

N

Purple stripe

(1� ns)|r!0 =
2

N

8� p

9� p

asymptotic formula 
at small r for 
Dp-brane models

ns = 1� 5

3

1

N
D3-brane

Orange stripe ns = 1� 3

2

1

N D5-brane

a-attractor

ns precision data?

PICO: σ(ns) = 0.0015 

Which of the stripes
will be the favorite?

Even not detecting B-modes one 
will be able to distinguish between 
these models!

ns
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T-models (yellow) and E-models (red) 
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<latexit sha1_base64="MPjLsB4matmby9HGi36wv7FX7hQ=">AAACF3icbVC7SgNBFJ31GeMramkzKIJV2I1gbMSAjaWCeUA2LncnE3dwdnaduRsISwr/wcZfsbFQxFY7/8bJo/B1YOBwzj3cuSdMpTDoup/OzOzc/MJiYam4vLK6tl7a2GyYJNOM11kiE90KwXApFK+jQMlbqeYQh5I3w5vTkd/sc21Eoi5xkPJODNdK9AQDtFJQKjeCS3pMG4FLfQQVXVVyvw86jYSf2Bz1za3G/NAHmUYwHAalXbfsjkH/Em9Kdmv1u+qJp6rnQenD7yYsi7lCJsGYtuem2MlBo2CSD4t+ZngK7AauedtSBTE3nXx815DuWaVLe4m2TyEdq98TOcTGDOLQTsaAkfntjcT/vHaGvaNOLlSaIVdssqiXSYoJHZVEu0JzhnJgCTAt7F8pi0ADQ1tl0Zbg/T75L2lUyt5BuXJh22iSCQpkm+yQfeKRKqmRM3JO6oSRe/JInsmL8+A8Oa/O22R0xplmtsgPOO9fduKh3A==</latexit>



T-models (yellow) and E-models (red) 
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By zooming at the 1s area (dark pink or dark blue), we see that 
most of it is covered by two simplest models of a-attractors
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T-models, E-models and KKLTI models on Log r scale:

A combination of the simplest a-attractors and KKLTI 
models of D-brane inflation covers most of the area 
favored by Planck 2018, all the way down to r = 0.



The era of precision cosmology: history lessons  
Akrami, RK, Linde, and Vardanyan, 2018 

The landscape, the swampland and the era of precision cosmology 
Akrami, RK, Linde, and Vardanyan 1808.09440
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D3/D7 brane inflation 
Inflection point

Racetrack inflation

Many versions of string theory inflation with extremely small r 
were ruled out by the increasing precision of data related to ns


