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Weakly Interacting Massive Particles (WIMPs)

χ: generic DM particle, nχ its number density. Assume
χ = χ̄, i.e. χχ ↔SM particles is possible, but single
production of χ is forbidden by some symmetry.
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Weakly Interacting Massive Particles (WIMPs)

χ: generic DM particle, nχ its number density. Assume
χ = χ̄, i.e. χχ ↔SM particles is possible, but single
production of χ is forbidden by some symmetry.

Evolution of nχ determined by Boltzmann equation:

dnχ

dt
+ 3Hnχ = −〈σannv〉

(

n2
χ − n2

χ, eq

)

H Hubble parameter; 〈. . . 〉 : Thermal averaging
σann = σ(χχ → SM)
v : relative velocity between χ’s in their cms
nχ, eq : χ density in full equilibrium
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Weakly Interacting Massive Particles (WIMPs)

χ: generic DM particle, nχ its number density. Assume
χ = χ̄, i.e. χχ ↔SM particles is possible, but single
production of χ is forbidden by some symmetry.

Evolution of nχ determined by Boltzmann equation:

dnχ

dt
+ 3Hnχ = −〈σannv〉

(

n2
χ − n2

χ, eq

)

H Hubble parameter; 〈. . . 〉 : Thermal averaging
σann = σ(χχ → SM)
v : relative velocity between χ’s in their cms
nχ, eq : χ density in full equilibrium

Gives
Ωχh2 ∝ 1

〈vσann〉
∼ 0.1 for σann ∼ pb
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Estimating the required coupling

Case 1: mχ > mediator mass MM

σann ∼ α2

mχ

2
α : some couplings (6= αem, usually)

σann ∼ 1 pb ≃ 2.5 · 10−9 GeV−2 =⇒ α ∼ 5 · 10−3 mχ

100 GeV
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Estimating the required coupling

Case 1: mχ > mediator mass MM

σann ∼ α2

mχ

2
α : some couplings (6= αem, usually)

σann ∼ 1 pb ≃ 2.5 · 10−9 GeV−2 =⇒ α ∼ 5 · 10−3 mχ

100 GeV

Case 2: 0.5mχ < mediator mass MM

σann ∼ α2mχ

2M4
m

σann ∼ 2.5 · 10−9 GeV−2 =⇒ α ∼ 5 · 10−3 Mm

100 GeV
Mm

mχ
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Direct WIMP detection

Look for elastic scattering of ambient WIMPs off nuclei;
signal: nuclear recoil. No (reproducable) signal has been
found.
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Direct WIMP detection

Look for elastic scattering of ambient WIMPs off nuclei;
signal: nuclear recoil. No (reproducable) signal has been
found.
Current best bound: XENON1T collab., arXiv:1805.12562
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Direct WIMP Searches (cont’d)

If scattering proceeds via mediator with same coupling α:

σ(χN → χN) ∼
α2µ2

M4
m

µ =
mχmN

mχ + mN

≃ mχ
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Direct WIMP Searches (cont’d)

If scattering proceeds via mediator with same coupling α:

σ(χN → χN) ∼
α2µ2

M4
m

µ =
mχmN

mχ + mN

≃ mχ

Case 1:

σχN ∼ 2.5 · 10−9
m2

χ

M4
m

≥
2.5 · 10−9

m2
χ

≃ 10−4 pb

(

100 GeV

mχ

)2
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Direct WIMP Searches (cont’d)

If scattering proceeds via mediator with same coupling α:

σ(χN → χN) ∼
α2µ2

M4
m

µ =
mχmN

mχ + mN

≃ mχ

Case 1:

σχN ∼ 2.5 · 10−9
m2

χ

M4
m

≥
2.5 · 10−9

m2
χ

≃ 10−4 pb

(

100 GeV

mχ

)2

Case 2:

σχN ∼ 10−4 pb

(

100 GeV

mχ

)2
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Experimental bound

For mχ >
∼ 50 GeV:

σχN ≤
mχ

100 GeV
·

{

10−10 pb, spin indep.

10−5 pb, spin dep.
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Experimental bound

For mχ >
∼ 50 GeV:

σχN ≤
mχ

100 GeV
·

{

10−10 pb, spin indep.

10−5 pb, spin dep.

Ways around this:
(i) Make χ light! Current searches lose sensitivity if mχ ≤

(few) GeV. Not today!
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mχ
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·
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10−10 pb, spin indep.

10−5 pb, spin dep.

Ways around this:
(i) Make χ light! Current searches lose sensitivity if mχ ≤

(few) GeV. Not today!

(ii) Make χ heavy!

mχ >
∼

{

200 GeV spin dep. : no problem

10 TeV spin indep. : ??
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Experimental bound

For mχ >
∼ 50 GeV:

σχN ≤
mχ

100 GeV
·

{

10−10 pb, spin indep.

10−5 pb, spin dep.

Ways around this:
(i) Make χ light! Current searches lose sensitivity if mχ ≤

(few) GeV. Not today!

(ii) Make χ heavy!

mχ >
∼

{

200 GeV spin dep. : no problem

10 TeV spin indep. : ??

(iii) Decouple mediator from light quarks!
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A Very Heavy Thermal WIMP

MD, F. Gomes Ferreira, JHEP 1904 (2019) 167

Enhance annihilation cross section through resonance:
mχ ≃ Mm/2! For complex scalar WIMP: need scalar
mediator. For Majorana fermion WIMP: need pseudoscalar mediator.
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A Very Heavy Thermal WIMP

MD, F. Gomes Ferreira, JHEP 1904 (2019) 167

Enhance annihilation cross section through resonance:
mχ ≃ Mm/2! For complex scalar WIMP: need scalar
mediator. For Majorana fermion WIMP: need pseudoscalar mediator.

Mediator should have similar couplings to initial and final
state

Can be realized in [E(6) motivated] U(1)′ extended MSSM!
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ν̃R in U(1) Extended MSSM

(Reasonably) well motivated model:

MSSM +νR Superfield (SM singlet) +E(6) inspired U(1), broken by

SM singlet N
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ν̃R in U(1) Extended MSSM

(Reasonably) well motivated model:

MSSM +νR Superfield (SM singlet) +E(6) inspired U(1), broken by

SM singlet N

LHC: mZ′ >
∼ 4 TeV ≫ mZ , mh

=⇒ one physical Higgs ≃ N , with mN ≃ mZ′ !
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(Reasonably) well motivated model:

MSSM +νR Superfield (SM singlet) +E(6) inspired U(1), broken by

SM singlet N

LHC: mZ′ >
∼ 4 TeV ≫ mZ , mh

=⇒ one physical Higgs ≃ N , with mN ≃ mZ′ !

ν̃Rν̃RN coupling ∝ g′mZ′ (D−term): allows S−wave pole for
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≃ mN/2 ≃ mZ′/2!
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MSSM +νR Superfield (SM singlet) +E(6) inspired U(1), broken by

SM singlet N

LHC: mZ′ >
∼ 4 TeV ≫ mZ , mh

=⇒ one physical Higgs ≃ N , with mN ≃ mZ′ !

ν̃Rν̃RN coupling ∝ g′mZ′ (D−term): allows S−wave pole for

mν̃R
≃ mN/2 ≃ mZ′/2!

Maximal annihilation cross section scales with square of this

coupling, which depends on θ(E6), mixing angle between the two

U(1) factors
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ν̃R in U(1) Extended MSSM

(Reasonably) well motivated model:

MSSM +νR Superfield (SM singlet) +E(6) inspired U(1), broken by

SM singlet N

LHC: mZ′ >
∼ 4 TeV ≫ mZ , mh

=⇒ one physical Higgs ≃ N , with mN ≃ mZ′ !

ν̃Rν̃RN coupling ∝ g′mZ′ (D−term): allows S−wave pole for

mν̃R
≃ mN/2 ≃ mZ′/2!

Maximal annihilation cross section scales with square of this

coupling, which depends on θ(E6), mixing angle between the two

U(1) factors

Relic density minimized, if N coupling to final state ≃ gNν̃Rν̃∗

R
:

achieved by tuning doublet Higgs masses
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Result
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Allows mν̃R
up to 35 TeV!
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Testing this model

WIMP–nucleon scattering cross section is well below
the “neutrino floor”
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Testing this model

WIMP–nucleon scattering cross section is well below
the “neutrino floor”

Cross section for indirect detection (WIMP annihilation
in halo of galaxies) can be enhanced!
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Mediator Coupling to Heavy Quarks

MD, Z. Zhang, arXiv:1903.00496

Vector couplings: Leads to spin–indep. interaction
=⇒ Only couplings to u, d have to vanish
Allow (equal) couplings to s, c, b, t
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Mediator Coupling to Heavy Quarks

MD, Z. Zhang, arXiv:1903.00496

Vector couplings: Leads to spin–indep. interaction
=⇒ Only couplings to u, d have to vanish
Allow (equal) couplings to s, c, b, t

Axial–vector couplings: Leads to spin–dep. interaction
=⇒ Couplings to u, d, s have to vanish
Allow (equal) couplings to b, t
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Mediator Coupling to Heavy Quarks

MD, Z. Zhang, arXiv:1903.00496

Vector couplings: Leads to spin–indep. interaction
=⇒ Only couplings to u, d have to vanish
Allow (equal) couplings to s, c, b, t

Axial–vector couplings: Leads to spin–dep. interaction
=⇒ Couplings to u, d, s have to vanish
Allow (equal) couplings to b, t

Best way to test this: LHC!
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LHC constraints

Mediator couples to bb̄ =⇒ searches with b−tag are most
sensitive! (CheckMate says so.)
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LHC constraints

Mediator couples to bb̄ =⇒ searches with b−tag are most
sensitive! (CheckMate says so.)

For mediator decay into bb̄: Search for bb̄ resonance
(ATLAS)
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LHC constraints

Mediator couples to bb̄ =⇒ searches with b−tag are most
sensitive! (CheckMate says so.)

For mediator decay into bb̄: Search for bb̄ resonance
(ATLAS)

For mediator decay into WIMPs: Search for bb̄ plus
missing ET (ATLAS)
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Results
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Results

Search for WIMP pair final state competitive with “pure
mediator” search!
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Results

Search for WIMP pair final state competitive with “pure
mediator” search!

Search for boosted bb̄ resonance +jet would be helpful for
mR < 0.6 TeV.
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Lµ − Lτ Mediator

MD, M. Shi, Z. Zhang, Phys. Lett. B791 (2019) 130

Obviously no tree–level coupling to nucleons
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Lµ − Lτ Mediator

MD, M. Shi, Z. Zhang, Phys. Lett. B791 (2019) 130

Obviously no tree–level coupling to nucleons

Is anomaly–free with SM fermion content! Previous model with

axial–vector couplings was anomalous.
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Lµ − Lτ Mediator

MD, M. Shi, Z. Zhang, Phys. Lett. B791 (2019) 130

Obviously no tree–level coupling to nucleons

Is anomaly–free with SM fermion content! Previous model with

axial–vector couplings was anomalous.

No significant constraint from e+e− colliders
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Lµ − Lτ Mediator

MD, M. Shi, Z. Zhang, Phys. Lett. B791 (2019) 130

Obviously no tree–level coupling to nucleons

Is anomaly–free with SM fermion content! Previous model with

axial–vector couplings was anomalous.

No significant constraint from e+e− colliders

Hence, search at LHC again!
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LHC constraints

Get final states with up to four µ±, τ±
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LHC constraints

Get final states with up to four µ±, τ±

Final states with single charged lepton useless (huge
Drell–Yan background)
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LHC constraints

Get final states with up to four µ±, τ±

Final states with single charged lepton useless (huge
Drell–Yan background)

Replacing µ± by τ± makes things worse =⇒ maximize
number of muons!
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Results
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Results (cont’d)

Except Z → µ+µ−Z ′ → 4µ search (CMS), searches are
not optimized: no better than old “trident” search,
νµN → νµµ+µ−N (CHARM, CCFR).

Dark Matter Theory – p. 18/21



Results (cont’d)

Except Z → µ+µ−Z ′ → 4µ search (CMS), searches are
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νµN → νµµ+µ−N (CHARM, CCFR).

3µ+ missing ET search most sensitive at LHC, except
for 5 GeV ≤ MZ′ ≤ 50 GeV
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Except Z → µ+µ−Z ′ → 4µ search (CMS), searches are
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νµN → νµµ+µ−N (CHARM, CCFR).

3µ+ missing ET search most sensitive at LHC, except
for 5 GeV ≤ MZ′ ≤ 50 GeV

Sensitivity to invisible Z ′ decays, in particular Z ′ →
WIMPs, is not very good
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Results (cont’d)

Except Z → µ+µ−Z ′ → 4µ search (CMS), searches are
not optimized: no better than old “trident” search,
νµN → νµµ+µ−N (CHARM, CCFR).

3µ+ missing ET search most sensitive at LHC, except
for 5 GeV ≤ MZ′ ≤ 50 GeV

Sensitivity to invisible Z ′ decays, in particular Z ′ →
WIMPs, is not very good

Model might also be testable through heating of old
neutron stars! R. Garani, J. Heeck, arXiv:1906.10145
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WIMP NREFT?

MD, R. Mehra

Traditionally, WIMP–nucleon scattering is described by
only two operators (spin–indep., spin–dep.); formally
correct for WIMP velocity v → 0.
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WIMP NREFT?

MD, R. Mehra

Traditionally, WIMP–nucleon scattering is described by
only two operators (spin–indep., spin–dep.); formally
correct for WIMP velocity v → 0.

More generally, 13 different non–relativistic operators
can contribute up to O(v2) Fan, Reece, Wang 2010; Fitzpatrick et al.

2013; . . .
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WIMP NREFT?

MD, R. Mehra

Traditionally, WIMP–nucleon scattering is described by
only two operators (spin–indep., spin–dep.); formally
correct for WIMP velocity v → 0.

More generally, 13 different non–relativistic operators
can contribute up to O(v2) Fan, Reece, Wang 2010; Fitzpatrick et al.

2013; . . .

Some operators scale like 3−mom. transfer q/mp ∼ 0.1,
not like v ∼ 10−3: constraint can be comparable to usual
spin–dep. one!
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However...

Lorentz–invariant operators that generate these new
operators in non–relat. limit generically also generate
traditional spin–indep. operator: completely dominates
unless its coefficient is “accidentally” suppressed by
cancellation by about 1 part in 103.
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However...

Lorentz–invariant operators that generate these new
operators in non–relat. limit generically also generate
traditional spin–indep. operator: completely dominates
unless its coefficient is “accidentally” suppressed by
cancellation by about 1 part in 103.

Relevant operators are P− and T−odd =⇒
corresponding Lorentz–invariant operators violate CP,
often give rise to neutron EDM; resulting bound makes
WIMP scattering unobservable.
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Summary

Direct WIMP searches have become quite constraining!
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Summary

Direct WIMP searches have become quite constraining!

U(1)′ extended MSSM allows thermal ν̃R WIMP with
mass in excess of 30 TeV
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Summary

Direct WIMP searches have become quite constraining!

U(1)′ extended MSSM allows thermal ν̃R WIMP with
mass in excess of 30 TeV

LHC searches for mediators not coupling to first
generation quarks are not very strong; few dedicated
searches as yet =⇒ can quite easily build models with
O(100) GeV WIMPs!
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Summary

Direct WIMP searches have become quite constraining!

U(1)′ extended MSSM allows thermal ν̃R WIMP with
mass in excess of 30 TeV

LHC searches for mediators not coupling to first
generation quarks are not very strong; few dedicated
searches as yet =⇒ can quite easily build models with
O(100) GeV WIMPs!

Motivation for “general WIMP NREFT” is weak.

Dark Matter Theory – p. 21/21
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