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Motivation

Motivation

There is an asymmetry between the matter and antimatter
abundances in the universe
Sakharov conditions must be satisfied
Sphaleron washout processes must be suppressed in the broken
phase
We propose a mechanism for generating the asymmetry through
the production of electroweak monopoles in a Born-Infeld
extension to the standard model.
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The nature of the monopoles Topological Stability

1-D topological defects

Consider a 1D potential:

V (φ) =
λ

4

(
φ2 − η2

)2

Η-Η Φ

VHΦL

For
∫∞
−∞ V (φ)dx <∞, φ(±∞)→ ±η
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The nature of the monopoles Topological Stability

1-D topological defects

Suppose φ(∞) = φ(−∞) = −η

-Η Η
Φ

VHΦL

Decays to the constant solution
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The nature of the monopoles Topological Stability

1-D topological defects

Suppose φ(∞) = −φ(−∞)

-Η Η
Φ

VHΦL

Heuristically requires an infinite amount of energy to transition to
constant solution.
Topological stability from disconnected vacuum manifold
π0(Mvac) 6= 0.
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The nature of the monopoles Topological Stability

1-D topological defects

Suppose φ(∞) = −φ(−∞)

ϕ = η

ϕ = -η

x

ϕ(x)

Heuristically requires an infinite amount of energy to transition to
constant solution.
Topological stability from disconnected vacuum manifold
π0(Mvac) 6= 0.
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The nature of the monopoles Topological Stability

Monopoles

Monopoles are an extension of this idea to 3 spatial dimensions
Spatial infinity is described by a 2-sphere
Finite energy requires φ : S2

∞‘ → Mvac .
Topologically non-trivial solutions exist when π2(Mvac) 6= 0
For the standard model, Mvac = (SU(2)L × U(1)Y )/U(1)EM

π2(Mvac) = π2(S3) = 0

No electroweak monopoles?
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The nature of the monopoles Topological Stability

The Ansatz

Cho and Maison (1997) found electroweak monopoles through the
ansatz:

φ =
1√
2
ρξ

ρ = ρ(r)

ξ = i
(

sin(θ/2)e−iϕ

− cos(θ/2)

)
Aµ =

1
g

A(r)∂µt r̂ +
1
g

(f (r)− 1)r̂ × ∂µr̂

Bµ = − 1
g′

B(r)∂µt − 1
g′

(1− cos θ)∂µϕ
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The nature of the monopoles Topological Stability

Why is this stable?

ξ = i
(

sin(θ/2)e−iϕ

− cos(θ/2)

)
Bµ = − 1

g′
(1− cos θ)∂µϕ

Gauge invariance under U(1)Y implies that the vacuum manifold
is defined up to a phase.
String singularities in both fields at θ = π

Can be removed using a Wu-Yang construction
Each hemisphere maps onto C1

By definition, this corresponds to the Riemann sphere, CP1

π2(Mvac) = Z
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The nature of the monopoles Monopole Mass

The energy

E = E0 + E1

E0 = 4π
∫ ∞

0

dr
2r2

{
1

g′2
+

1
g2 (f 2 − 1)2

}

E1 = 4π
∫ ∞

0
dr
{

1
2

(r ρ̇)2 +
1
g2

(
ḟ 2 +

1
2

(r Ȧ)2 + f 2A2
)

+
1

2g′2
(r Ḃ)2 +

λr2

8
(ρ2 − ρ2

0)2

+
1
4

f 2ρ2 +
r2

8
(B − A)2ρ2

}

The first term of E0 is divergent at the origin.
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The nature of the monopoles Monopole Mass

Regularisation

Cho, Kim and Yoon(2015) proposed a regularisation of the form:

g′ → g′√
ε

ε =

(
φ

φ0

)n

However, g′ becomes non-peturbative as φ→ 0.
This is undesirable in an EFT framework.
We instead propose a Born-Infeld modification for the U(1)Y
kinetic term.
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The nature of the monopoles Monopole Mass

Born-Infeld modification
We regularise the U(1)Y kinetic term by replacing it with:

β2

[
1−

√
− det

(
ηµν +

1
β

Bµν

)]

= β2

[
1−

√
1 +

1
2β2 BµνBµν − 1

16β4 (BµνB̃µν)2

]
As β →∞, the SM is recovered.
The corresponding energy is∫ ∞

0
drβ2

√(4πr2)2 +

(
4π
g′β

)2

− 4πr2


=

4π5/2

3Γ
( 3

4

)2

√
β

g′3 ≈ 72.8
√
β

Hence, β acts as a mass parameter for the monopoles.
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The nature of the monopoles Monopole Mass

Extend the SU(2) sector as well with an independent Born-Infeld
term:

β2
1

[
1−

√
− det

(
ηµν +

1
β1

Bµν

)]
+β2

2

[
1−

√
− det

(
ηµν +

1
β2

Fµν

)]

Constrained by light by light scattering results (Ellis et al. 2017):

√
βEM =

√
β2

4
√

sin4 θW + cos4 θW
(β2
β1

)2
& 100GeV

For β2 >> β1 (perturbative unitarity) gives a lower bound for
monopole mass of ∼ 9− 11TeV
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Monopoles and cosmology The Electroweak Phase transition
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Monopoles and cosmology The Electroweak Phase transition

The Electroweak Phase transition

SM high temperature effective potential:

V (φ,T ) = D(T 2 − T 2
0 )φ2 − ETφ3 − 1

4
λTφ

4

curvature at the origin changes at T = T0

the nature of the transition depends on the values of the SM
parameters.
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Monopoles and cosmology The Electroweak Phase transition

First order phase transition

The minima become
degenerate before T0

Bubbles of the broken phase
form
collisions lead to gravitational
waves, baryogenesis etc.

Figure: First order phase transition
(Petropoulos,2003)
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Monopoles and cosmology The Electroweak Phase transition

Second order phase transition

The minima never become
degenerate
the universe rolls
homogeneously into the
broken phase
predicted by SM parameters

Figure: Second order phase transition
(Petropoulos,2003)
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Monopoles and cosmology Monopole production
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Monopoles and cosmology Monopole production

The Kibble Mechanism (Kibble, 1976)

At T = Tc , domains of the broken phase will appear
The higgs field in each domain takes independent directions on
the vacuum manifold

φ4

φ3

φ2

φ1

φ = 0
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Monopoles and cosmology Monopole production

The Kibble mechanism (Kibble, 1976)

As the Higgs field is continuous, it must be interpolated at the
intersections.
Consider an intersection of four of these domains:

φ4

φ3

φ2

φ1
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Monopoles and cosmology Monopole production

The Kibble mechanism (Kibble, 1976)

In field space, these points form the vertices of a tetrahedron.
This tetrahedron should be shrunk to a point at the intersection.
If these cannot be shrunk to a point continuously, a topological
defect in the form of a monopole which continuously joins the two
minima.
The tetrahedron is homotopically equivalent to S2.
Therefore, π2(CP1) = Z implies the existence of monopoles

φ4

φ3

φ2

φ1
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Monopoles and cosmology Sphaleron Processes
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Monopoles and cosmology Sphaleron Processes

Sphaleron Processes

Sphaleron mediated scattering processes occur in the unbroken
phase
They violate B + L in units of ∆B = ∆L = 3
If unsuppressed, they washout any pre-existing baryon number.
Supression in the broken phase requires a 1st order EWPT with
φc
Tc

& 1.
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Monopoles and cosmology Sphaleron Processes

The electroweak phase transition

The Gibbs free energy:

Gu = V (0)

Gb = V (φc(T )) + Emonopoles

At the critical temperature:

V (0) = V (φc(Tc)) + Emonopoles

Assuming T << M,the monopoles are decoupled and
Emonopoles = M × nM
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Monopoles and cosmology Sphaleron Processes

The initial density

nM ≈ 1
d3 where d is the separation of two uncorrelated monopoles.

This is chosen to be the Coulomb capture distance.

Hence, nM ≈
(4π

h2

)3
T 3
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Monopoles and cosmology Sphaleron Processes

Results

100 1000 104 105
MHTeVL0.0

0.5

1.0

1.5

Φc

Tc

Sphaleron processes are suppressed for M > 0.9 · 104 TeV.
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Monopoles and cosmology Big Bang Nucleosynthesis
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Monopoles and cosmology Big Bang Nucleosynthesis

The constraint

The monopole density should not dominate the universe at the
time of helium synthesis. This implies:

n
T 3

∣∣
T=1MeV

< 1MeV
M

Hence, the evolution of the number density over time must be
considered.
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Monopoles and cosmology Big Bang Nucleosynthesis

The number density at lower temperatures

Consider monopoles drifting towards anti monopoles in a plasma
of charged fermions.
Scattering cross-section: σqi M = (hqi/4π)2T−2

After ∼ M
T collisions, the monopole is scattered at a large angle

and drifts towards the antimonopole.
This yields a mean free path of:

λ ≈ vdrift∑
i niσi

M
T

≈ 1
B

(
M
T 3

)1/2

B = 3
4π2 ζ(3)

∑
i (hqi/4π)2
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Monopoles and cosmology Big Bang Nucleosynthesis

dnM

dt
= −Dn2

M − 3HnM

Annihilation ends when λ ≈ h2

4πT , the Coulomb capture radius.

This occurs at Tf ≈
(4π

h2

)2 M
B2

For T < Tf , the monopole density simply dilutes as n ∝ T 3.
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Monopoles and cosmology Big Bang Nucleosynthesis

Nucleosynthesis constraint

Solving the Boltzmann equation, one obtains (Preskill, 1979)

n
T 3 =

1
Bh2

(
4π
h2

)2 M
CMpl

, (T > Tf )

C = (45/4π3N)1/2

This constrains the mass of the monopole to M . 2.3 · 104 TeV.
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Baryogenesis

Sakharov conditions

In 1967, Andrei Sakharov proposed three conditions for
baryogenesis to occur:

1 Baryon number violation
2 C and CP violation
3 Departure from thermal equilibrium- 1st order EWPT.
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Baryogenesis

C and CP-violation

Consider the θ- terms:

Lθ = θ2F a
µν F̃ aµν + θ1BµνB̃µν

In the ususal case:
hypercharge sector is
topologically trivial, and
hence, θ1 is unphysical
θ2 can be rotated away by a
B + L-rotation of quarks and
leptons.
no CP-violation

With electroweak monopoles:
Monopoles gain an electric
charge proportional to θEM
through the WItten effect
Supports θ1
Only one can be rotated
away
a new source of CP violation

Suntharan Arunasalam PASCOS 2019 31 / 35



Baryogenesis

C and CP-violation

Consider the θ- terms:

Lθ = θ2F a
µν F̃ aµν + θ1BµνB̃µν

In the ususal case:
hypercharge sector is
topologically trivial, and
hence, θ1 is unphysical
θ2 can be rotated away by a
B + L-rotation of quarks and
leptons.
no CP-violation

With electroweak monopoles:
Monopoles gain an electric
charge proportional to θEM
through the WItten effect
Supports θ1
Only one can be rotated
away
a new source of CP violation

Suntharan Arunasalam PASCOS 2019 31 / 35



Baryogenesis

B + L-violation

Lθ = θewF a
µν F̃ aµν ,

Topologically inequivalent vacuum configurations related by large
gauge transformations g ∈ SU(2)L give rise to the θew -vacuum
structure.

|M, θew 〉 =
n=+∞∑
n=−∞

einθew (U[g])n|M,0〉 .

monopole-antimopole pair that carries ∆n = 1 topological charge,
would annihilate into 9 quarks and 3 leptons, giving rise to
∆B = ∆L = 3.
not suppressed even at zero temperature (Callan, 1982)
(Rubakov, 1981)
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Baryogenesis

Baryon asymmetry of the universe

dn̄B

dt
= −κθdnM

dt

n̄B is the difference in the number densities of matter and
antimatter
κ describes the asymmetry generated in each collision
for monopoles, nM0 >> nMf .
Hence,

n̄B ≈ κθn0 = κθα3
EMT 3

c
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Baryogenesis

Baryon asymmetry of the universe

The asymmetry parameter, ηB, can now be evaluated:

ηB =
n̄B

s
= κθ

45α3
EMT 3

c

2π2g?T 3
f

1.6× 10−8κθ ≤ ηB ≤ 2.5× 10−7κθ.
Empirical values for the asymmetry parameter ηB ≈ 10−10 can be
accommodated for with κθew ∼ 10−3 − 10−2.
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Baryogenesis

Conclusion

Finite energy monopoles exist in the Standard model with a
Born-Infeld extension.
The mass is related to the Born-Infeld parameters
Sphaleron mediated processes can be made ineffective in the
broken phase while remaining under the nucleosynthesis
constraints.
This occurs for monopoles with a mass of (0.9− 2.3) · 104TeV.
Baryon asymmetry of the universe can be accounted for through
this mechanism
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