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A Standard Model-like Higgs particle has been
discovered by the ATLAS and CMS experiments at CERN

The low-mass  
    region 

m4l <160 GeV: 
Observed: 39 
Expected: 34± 3 

34 

2011+2012 data 

2011 data 2012 data 

Both Experiments look for a Higgs decaying into
two Z’s through four lepton channels

Both see an excess of ZZ events in the 125 GeV mass range.
The production rate is consistent with the one expected for

a 125 GeV mass Higgs. 
Wednesday, June 12, 2013

mγγ spectrum fit, for each category, with 
Crystal Ball + Gaussian for signal plus  
background model optimised (with MC)  
to minimize biases 
Max deviation of background model from  
expected background distribution taken  
as systematic uncertainty 

Total after selections: 59059 events 

Main systematic uncertainties 

Diphoton Background and Higgs Signal at the LHC

Ιn spite of the small rate, the Higgs decay to diphotons 
provides the most sensitive channel for low mass Higgs 

searches at the LHC

Wednesday, June 12, 2013

We see evidence
of this particle

in multiple channels.

We can reconstruct
its mass and we know
that is about 125 GeV. 

The rates are consistent
with those expected 

in the Standard Model.

Monday, August 26, 2013



Large Variations of Higgs couplings are still possible

But we cannot determine the Higgs couplings very accurately

As these measurements become more precise, they constrain possible 
extensions of the SM, and they could lead to the evidence of new physics.

It is worth studying what kind of effects one could obtain in well motivated 
extensions of the Standard Model, like SUSY.

Monday, August 26, 2013



Going Beyond the SM :
Two Higgs Doublet Models

The simplest extension of the SM is to add one Higgs doublet, with the same 
quantum numbers as the SM one. 

Now, we will have contributions to the gauge boson masses coming from the 
vacuum expectation value of both fields

Therefore, the gauge boson masses are obtained from the SM expressions by 
simply replacing 

There is then a free parameter, that is the ratio of the two vacuum expectation 
values, and this is usually denoted by 

The number of would-be Goldstone modes are the same as in the SM, namely 3.    
Therefore, there are still 5 physical degrees of freedom in the scalar sector which 
are a charged Higgs, a CP-odd Higgs and two CP-even Higgs bosons. 
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Goldstone Modes and Physical States

Since both Higgs fields carry the same quantum numbers, one can always define the 
combinations

The first combination acquires vacuum expectation value v.  The second does not 
acquire a vacuum expectation value.

Then, it is clear that the Goldstone modes will be the charged and the imaginary 
part of the neutral components of   

The charged and imaginary part of the neutral components of          will be the 
physical charged and CP-odd Higgs bosons respectively. 

What about the CP-even states ?   There is no symmetry argument and in principle 
both states could mix.  
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CP-even Higgs Bosons

There is no symmetry argument and in general these two Higgs boson states will 
mix.   The mass eigenvalues, in increasing order of mass, will be

From here one can easily obtain the coupling to the gauge bosons.  This is simply 
given by replacing in the mass contributions 

This leads to  a coupling proportional to 

Hence, the effective coupling of h is given by 

These proportionality factors are nothing but the projection of the Higgs mass 
eigenstates into the one acquiring a vacuum expectation value. 
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Comments
The some of the square of the couplings of the trilinear couplings of the two        CP-
even Higgs bosons to the gauge bosons is equal to the square of the trilinear coupling 
in the SM.

If the mixing angle is such that

then the lightest Higgs behaves as the SM Higgs and acquires a vacuum expectation 
value equal to v.  Only one of the two Higgs doublets is involved in electroweak 
symmetry breaking and contains all the Goldstone modes and the lightest Higgs state.

The fields corresponding to the other Higgs boson do not present trilinear couplings 
to the gauge bosons.

This limit is called the decoupling limit, and from an effective theory point of view it 
must be achieved when the masses of the non-standard Higgs bosons is large.

Needless to say the quartic coupling of Higgs bosons with gauge bosons is governed 
by gauge interactions independent of the vacuum expectation values and it takes the 
SM value for both Higgs fields.
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Fermion Masses and Flavor

Similarly to the gauge boson masses, the fermion masses are obtain from the some of the 
contributions of both Higgs fields.

For instance, the down-quark mass matrix is given by

The interaction of the two CP-even scalars with fermions is given, instead, by

So, contrary to the SM, the rotation that diagonalizes the mass matrix does not diagonalize 
the couplings.  This in general leads to large Higgs mediated Flavor changing processes, that 
are in conflict with experiment. 

One solution is to make the non-standard Higgs bosons very heavy, going close to the SM.  
Another natural solution is to restrict the couplings of each fermion sector to only one of 
the two Higgs doublets.  This is what happens to a good approximation in supersymmetry. 
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Type II Higgs doublet models

There are many possible choices one could make. For instance, we can add a 
symmetry transformation that prevents the coupling of one of the Higgs bosons to 
quarks and leptons.  Let’s say that such a Higgs boson is H1.  Then, we regain 
alignment in flavor space. 

In principle such symmetry operator would also prevent the mixing of the two 
Higgs bosons, but let’s assume that this symmetry is broken softly and allow scalar 
mixing.    Then, the fermion couplings will be given by

In Type II models, instead, the Higgs H1 would couple to down-quarks and charge 
leptons, while the Higgs H2 couples to up quarks and neutrinos.  Therefore,

Observe that close to the decoupling limit, the lightest Higgs couplings are SM-like, 
while the heavy Higgs couplings to down quarks and up quarks are enhanced 
(suppressed) by a             factor.   We shall concentrate on this case. 
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Higgs Potential
The most generic two Higgs doublet potential is given by

As said before, we shall assume that

One can minimize this potential, assuming real couplings, to get (                    )

Now, since we know the exact components of the CP-odd Higgs and the charged 
Higgs one can use these minimization conditions to get their masses as a function 
of  only one of the mass parameters and the quartic couplings. One obtains

the alignment limit does not require the non-standard Higgs bosons to be heavy. After

presenting the general conditions for the alignment limit in 2HDMs, we analyze in detail the

possible implications for well motivated models containing two Higgs doublets. In particular,

we consider the MSSM as well as its generalization to the next-to-minimal supersymmetric

standard model (NMSSM), where an extra singlet is added. Along the way, we analyze

the extent to which precision measurements of Higgs-fermion couplings could be useful in

probing regions of parameters that are di�cult to access through direct non-standard Higgs

boson searches.

This article is organized as follows. In the next section we define the notation and briefly

review the scalar potential and the Higgs couplings in general, renormalizable 2HDMs. In

Section III we derive the alignment condition in the decoupling regime in terms of the eigen-

vectors of the CP-even Higgs mass matrix, which provides a simple analytical understanding

of alignment. We then write down the general conditions for alignment without decoupling.

In Section IV we study the alignment limit in general 2HDMs and provide new perspectives

on previous works. Detailed studies on the parameter space of the MSSM and beyond are

presented in Section V, which is followed by the conclusion in Section VI.
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where

v ⌘
q

v21 + v22 ⇡ 246 GeV , t� ⌘ tan � =
v2
v1

. (5)

We choose 0  �  ⇡/2 so that t� � 0 and write v1 = v cos � ⌘ vc� and v2 = v sin � ⌘ vs�.

The five mass eigenstates are: two CP-even scalars, H and h, with mh  mH , one CP-odd

scalar, A, and a charged pair, H±. The mass parameters, m2
11 and m2

22, can be eliminated

by imposing the minimization condition [12]:
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The CP-even sector
The CP-even mass matrix may be computed by using the minimization condition 
and the value of the CP-odd Higgs mass.  One obtains,

where 

Observe that for large values of the CP-odd Higgs mass,  and perturbative 
couplings, one can ignore the second term compared to the first term,  and then 
one obtains that the heavier CP-even Higgs is of order of the CP-odd Higgs mass, 
while the lightest Higgs remains of the order of an effective quartic coupling times 
the Higgs vacuum expectation value.  Indeed, from our mixing angle definition, it 
must be fulfilled that
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2
� + �7s

2
� , (11)

L22 = �2s
2
� + 2�7s�c� + �5c

2
� . (12)

The mixing angle, ↵, in the CP-even sector is defined as
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where s↵ ⌘ sin↵ and c↵ ⌘ cos↵. This leads to
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From the (1, 2) component in the above equation we see

(m2
H �m2

h)s↵c↵ = M2
12 , (15)
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which implies s↵c↵ has the same sign as M2
12. The choice for the domain of ↵ is not physical,

however, for simplicity one would want to chose it such that the sign of M2
12 corresponds to

either the sign of s↵ or c↵ respectively:

(I) �⇡

2
 ↵  ⇡

2
: c↵ � 0 and Sign(s↵) = Sign(M2

12) , (16)

(II) 0  ↵  ⇡ : s↵ � 0 and Sign(c↵) = Sign(M2
12) . (17)

We will adopt the convention that c↵ is always positive, sign choice (I), which is the usual

sign convention followed in the literature.

The eigenvector associated with the eigenvaluem2
h corresponds to the second row in R(↵),

Eq. (13), and satisfies
0

@

M2
11 M2

12

M2
12 M2

22

1

A

0

@

�s↵

c↵

1

A = m2
h

0

@

�s↵

c↵

1

A , (18)

giving rise to two equivalent representations for t↵ ⌘ tan↵:

t↵ =
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M2

22 �m2
h

M2
12
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The equivalence of the two representations is guaranteed by the characteristic equation,

Det(M2 �m2
h I) = 0, where I is the 2⇥ 2 identity matrix. Moreover, since

m2
h  M2

ii  m2
H , for i = 1, 2 , (20)

due to the “level repulsion” of eigenvalues of symmetric matrices, in both representations

Sign(t↵) = Sign(M2
12), consistent with the sign choices specified above.

Eq. (19) allows us to solve for the mixing angle, ↵, in terms of {M2
11,M2

12,m
2
h} or
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12,m
2
h}, depending on one’s preference. For example, in the sign choice (I) we
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where the expression for m2
H follows from solving for the corresponding eigenvalue equation

for m2
H .

One can verify that Eqs. (21) and (22) lead to the expected limiting behavior when

M2
12 ! 0. For example, for Eq. (21), if M2

11 > M2
22, the smaller mass eigenvalue, m2

h, is
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Mixing Angle and Decoupling Limit

From the expressions before, one obtains

Then,  one can easily see that 

The above expressions represent the decoupling limit advertised before.

In the decoupling limit, the effective low energy theory is just the SM,  and 
therefore the obtention of couplings of the lightest Higgs boson which 
approach the SM ones is not a surprise.

Due to the results of the LHC, a relevant question is under which 
conditions I can keep a light non-standard Higgs spectrum while not 
deviating in a rough way from the SM couplings. 
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A when mA ! 1



Alignment without Decoupling
The eigenstate equation may be rewritten in the following way

For large values of the CP-odd Higgs mass we obtain

Now, the idea would be to obtain this condition for lower CP-odd Higgs masses, 
independently of mA

where s↵� ⌘ (�s↵/c�) and c↵� ⌘ (c↵/s�) tend to 1 in the alignment limit. We shall

demonstrate in the next section that the alignment conditions in general 2HDMs imply that

the Hhh coupling vanishes.

III. ALIGNMENT WITHOUT DECOUPLING

A. Derivation of the Conditions for Alignment

One of the main results of this work is to find the generic conditions for obtaining align-

ment without decoupling. The decoupling limit, where the low-energy spectrum contains

only the SM and no new light scalars, is only a subset of the more general alignment limit

in Eq. (28). In particular, quite generically, there exist regions of parameter space where

one attains the alignment limit with new light scalars not far above mh = 125 GeV.

It is instructive to first derive the alignment limit in the usual decoupling regime but in

a slightly di↵erent manner. Consider the eigenvalue equation of the CP-even Higgs mass

matrix, Eq. (18), which, using Eq. (9), becomes

0
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s2� �s�c�

�s�c� c2�

1

A

0

@

�s↵

c↵

1

A = � v2

m2
A

0

@

L11 L12

L12 L22

1

A

0

@

�s↵

c↵

1

A+
m2

h

m2
A

0

@

�s↵

c↵

1

A . (38)

Decoupling is defined by taking all non-SM-like scalar masses to be much heavier than the

SM-like Higgs mass, m2
A � v2,m2

h. Then we see that at leading order in v2/m2
A and m2

h/m
2
A,

the right-hand side of Eq. (38) can be ignored, and the eigenvalue equation reduces to

0

@

s2� �s�c�

�s�c� c2�

1

A

0

@

�s↵

c↵

1

A ⇡ 0 , (39)

leading to the well-known decoupling limit [8]: c��↵ = 0. This is also exactly the alignment

limit.

Here we make the key observation that while decoupling achieves alignment by neglecting

the right-hand side of Eq. (38), alignment can also be obtained if the right-hand side of

Eq. (38) vanishes identically, independent of mA:

v2

0

@

L11 L12

L12 L22

1

A

0
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�s↵

c↵

1

A = m2
h

0
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�s↵
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1

A . (40)
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cos(� � ↵) = 0

where s↵� ⌘ (�s↵/c�) and c↵� ⌘ (c↵/s�) tend to 1 in the alignment limit. We shall

demonstrate in the next section that the alignment conditions in general 2HDMs imply that

the Hhh coupling vanishes.
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More explicitly, since s↵ = �c� in the alignment limit, we can re-write the above matrix

equation as two algebraic equations: 3

(C1) : m2
h = v2L11 + t�v

2L12 = v2
⇣

�1c
2
� + 3�6s�c� + �̃3s

2
� + �7t�s

2
�

⌘

, (41)

(C2) : m2
h = v2L22 +

1

t�
v2L12 = v2

⇣

�2s
2
� + 3�7s�c� + �̃3c

2
� + �6t

�1
� c2�

⌘

. (42)

Recall that �̃3 = (�3 + �4 + �5). In the above mh is the SM-like Higgs mass, measured to

be about 125 GeV, and Lij is known once a model is specified. Notice that (C1) depends

on all the quartic couplings in the scalar potential except �2, while (C2) depends on all the

quartics but �1
4. If there exists a t� satisfying the above equations, then the alignment

limit would occur for arbitrary values of mA and does not require non-SM-like scalars to be

heavy!

Henceforth we will consider the coupled equations given in Eqs. (41) and (42) as required

conditions for alignment. When the model parameters satisfy them, the lightest CP-even

Higgs boson behaves exactly like a SM Higgs boson even if the non-SM-like scalars are light.

A detailed analysis of the physical solutions will be presented in the next Section.

B. Departure from Alignment

Phenomenologically it seems likely that alignment will only be realized approximately,

rather than exactly. Therefore it is important to consider small departures from the align-

ment limit, which we do in this subsection.

Since the alignment limit is characterized by c��↵ = 0, it is customary to parametrize the

departure from alignment by considering a Taylor-expansions in c��↵ [7, 8], which defines the

deviation of the ghV V couplings from the SM values. However, this parametrization has the

drawback that deviations in the Higgs coupling to down-type fermions are really controlled

by t� c��↵, which could be O(1) when t� is large. Therefore, we choose to parametrize the

3 The same conditions can also be derived using results presented in Ref. [8].
4 If we subtract (C1) and (C2) we find an equation that is independent of m

h

and is equivalent to the

condition for the cancelation of the quartic coupling term, �0
7 (H†

2H2H
†
2H1 + h.c.), in the Higgs basis

(H2 = �1 cos�+�2 sin�, H1 = ��1 sin�+�2 cos�), in which only H2 acquires a VEV. This allows to us

make contact with the results presented in Refs. [8, 10].
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Case of �6,7 = 0

 One of the conditions of alignment reduces to the obtention of the right Higgs mass

m2
h = (�2 sin

4 � +

˜�3 sin
2 � cos

2 � + �1 cos
4 �)v2

The additional condition is

tan2 � =
�1 � �SM

�SM � �̃3

and should be positive. In the MSSM, this ratio tends to be negative, but 
tends to be positive in the NMSSM, as we will show tomorrow when we 
analyze this case

Case of �6,7 6= 0

Apart from the Higgs mass requirement, one obtains that at large tanbeta, alignment
may occur without decoupling if

However, Eq. (57) must also be satisfied, which is then used to solve for the desired �2 so

that t(0)� is a root of (C2) as well. More specifically, the relations

�2 � �SM =
�SM � �̃3
⇣

t
(0)
�

⌘2 =
�1 � �SM
⇣

t
(0)
�

⌘4 (61)

must be fulfilled. Therefore, the alignment solution demands a specific relationship between

the quartic couplings of the 2HDM. In addition, it is clear from Eqs. (58) and (61) that if

all the quartic couplings are O(1), t(0)� ⇠ O(1) as well, unless �̃3 and �2 are very close to

�SM, or �1 is taken to be much larger than �SM. For examples, t(0)� ⇠ 5 could be achieved

for (�1, �̃3,�2) ⇠ (1., 0.23, 0.261), or for (�1, �̃3,�2) ⇠ (5., 0.07, 0.263). Our discussion so far

applies to alignment limit scenarios studied, for instance, in Refs. [7, 9], both of which set

�6 = �7 = 0.

B. Alignment for Non-Zero �6,7

The symmetry �1 ! ��1 leading to �6 = �7 = 0 is broken softly by m12. Thus a

phenomenologically interesting scenario is to consider small but non-zero �6,7. Therefore,

in this subsection we study solutions to the alignment conditions (C1) and (C2) under the

assumptions

�6,7 ⌧ 1 . (62)

Although general solutions of cubic algebraic equations exist, much insight can be gained

by first solving for the cubic roots of (C1) as a perturbation to the quadratic solution t
(0)
� ,

t
(±)
� = t

(0)
� ± 3

2

�6

�SM � �̃3

± �7(�1 � �SM)

(�SM � �̃3)2
+O(�2

6,�
2
7) . (63)

The solutions t(±)
� lie in the same branch as t(0)� , to which they reduce in the limit �6,7 ! 0.

In addition, both solutions are again O(1) given our assumptions. More importantly, similar

to t
(0)
� , specific fine-tuned relations between the quartic couplings are required to ensure t(±)

�

are also cubic roots of (C2).

However, a new solution also appears,

t
(1)
� =

�SM � �̃3

�7
� 3�6

�SM � �̃3

� �7(�1 � �SM)

(�SM � �̃3)2
+O(�2

6,�
2
7) . (64)
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This may occur in the MSSM.
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n
b
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FIG. 1: General behavior of contours with constant ghdd/ghddSM = r in the mA � tan� plane.

r = 1 corresponds to the alignment limit. At constant t� , moving toward smaller mA results in

larger deviations from r = 1. In the plot �i for i = 1, 2, 3 can be either positive or negative and

|�3| > |�2| > |�1|.

One can in fact push the preceding analysis further by deriving the condition giving rise

to a particular deviation from alignment. More specifically, the algebraic equation dictating

the contour ghdd/gf = r, where r 6= 1, can be obtained by using Eq. (75):

m2
A =

1

R(�)� 1

A� B
s�

+
m2

h

s2�
� v2�5 � �1v

2t�2
� � 2�6v

2t�1
� , (80)

where

R(�) =
t� r

q

1 + t2� � r2
. (81)

When r is close to unity, the above equation becomes

R(�) ⇡ 1 +
r � 1

s2�
. (82)

Several comments are in order. First, for r ⇡ 1� ⌘ with ⌘ ⌧ 1, R(�) ⇡ 1 + ⌘/s2�. Second,

once all the scalar quartic couplings are known, which in general could also depend on t�,

Eq. (80) gives the contour corresponding to ghdd/gf = r in the mA � tan � plane. Third, if

we consider a slice of constant t� away from the alignment limit then larger values of mA

19

General behavior of the down-quark couplings
to the lightest Higgs boson in the proximity of alignment

Behavior of the theory depends strongly on the
value of the quartic couplings.  We shall concentrate

on the particular two Higgs doublet models associated
with minimal supersymmetric extensions of the SM
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fermions                       fermions                       bosonsbosons

SupersymmetrySupersymmetry

electron                        electron                                      sselectronelectron

quark                              quark                                              ssquarkquark

photphotinoino                                                                      photonphoton

gravitgravitinoino                                                              gravitongraviton

Photino,  Zino and Neutral Higgsino:  Neutralinos

Charged Wino, charged Higgsino: Charginos

Particles and Sparticles share the same couplings to the Higgs. Two superpartners

of  the two quarks (one for each chirality) couple strongly to the Higgs with a 

Yukawa  coupling of order one (same as the top-quark Yukawa coupling)

Two Higgs doublets necessary � tan� = v2
v1

Monday, August 26, 2013



WhyWhy Supersymmetry  Supersymmetry ??

!! Helps to stabilize the weak scaleHelps to stabilize the weak scale——Planck scale hierarchyPlanck scale hierarchy

!! Supersymmetry Supersymmetry algebra contains the generator ofalgebra contains the generator of

         space-time translations.         space-time translations.

                  Necessary ingredient of theory of quantum gravity.Necessary ingredient of theory of quantum gravity.

!! MinimalMinimal supersymmetric  supersymmetric extension of the SM :extension of the SM :

                  Leads to Unification of gauge couplingsLeads to Unification of gauge couplings..

!! Starting from positive masses at high energies, Starting from positive masses at high energies, electroweak symmetry breakingelectroweak symmetry breaking
is inducedis induced radiatively radiatively..

!! If discrete symmetry,  P = (-1)            is imposed,  lightest  SUSYIf discrete symmetry,  P = (-1)            is imposed,  lightest  SUSY

         particle neutral and stable:          particle neutral and stable: Excellent candidate for cold Dark Matter.Excellent candidate for cold Dark Matter.

3B+L+2S

Possible

Quantum corrections induce quadratic divergent result

2

2

2

iiS22

H
16

gn
(-1)m i !"

#
$

Cancelled if particles of different spin with same couplings

 are present. This happens  within the minimal supersymmetric 

extension of the Standard Model

:
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Minimal Supersymmetric Standard Model

SM particle SUSY partner GSM

(S = 1/2) (S = 0)
Q = (t, b)L (t̃, b̃)L (3,2,1/6)
L = (�, l)L (�̃, l̃)L (1,2,-1/2)
U =

�
tC

⇥
L

t̃�R (3̄,1,-2/3)
D =

�
bC

⇥
L

b̃�R (3̄,1,1/3)
E =

�
lC

⇥
L

l̃�R (1,1,1)

(S = 1) (S = 1/2)
Bµ B̃ (1,1,0)
Wµ W̃ (1,3,0)
gµ g̃ (8,1,0)

8
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Two Higgs Doublets

Higgs Doublets

• Two Higgs doublets with opposite hypercharge.
(S = 0) (S = 1/2)
H1 H̃1 (1,2,-1/2)
H2 H̃2 (1,2,1/2)

• Both Higgs fields acquire v.e.v. New parameter, tan� = v2/v1.

• One should use both Higgs doublets to give masses to quarks and
leptons

P [�] = huQUH2 + hdQDH1 + hlLEH1 (5)

• Once these two Higgs doublets are introduced, a mass term may be
written

⇥P [�] = µH1H2 (6)

9

This is necessary in SUSY to

1) Cancel the gauge anoamlies

2) Generate Gauge invariant Yukawa couplings for all quarks and leptons

The Higgs problem

• Problem: What to do with the Higgs field ?

• In the Standard Model masses for the up and down (and lepton)
fields are obtained with Yukawa couplings involving H and H†

respectively.

• Impossible to recover this from the Yukawas derived from P [�], since
no dependence on �̄ is admitted.

• Another problem: In the SM all anomalies cancel,
X

quarks

Yi = 0;
X

left

Yi = 0;

X

i

Y 3
i = 0;

X

i

Yi = 0 (37)

• In all these sums, whenever a right-handed field appear, its charge
conjugate is considered.

• A Higgsino doublet spoils anomaly cancellation !

Physics Beyond the Standard Model Carlos E.M. Wagner, Argonne and EFI



Effective Potential in SUSY
In supersymmetry, one can derive the effective potential by introducing a quantity defined 
as the superpotential, which if one impose renormalizability is a generic analytic, gauge 
invariant polynomial of the chiral superfields (which include SM fermions and 
superpartners) of a degree lower and equal than 3

Yukawa couplings are obtained by derivatives of the superpotential

More important for our purposes, contributions to the scalar potential are obtained from

The potential is positive, what is not a surprise since in SUSY it is related to the square of 
the supersymmetric generators

W [�] = hij
u Q

iU jH2 + hij
d Q

iDjH1 + hij
l L

iEjH1 + µH1H2

� @W

@�i@�j
 i j + h.c.

V =
X

i

����
@W

@�i

����
2

+
1

2

X

a

DaDa

Da = �ga
X

i

�†
iT

a�i



Supersymmetry Breaking Parameters

Standard Model quark, lepton and gauge boson masses are protected by
chiral and gauge symmetries.
Supersymmetric partners are not protected.
Explanation of absence of supersymmetric particles in ordinary
experience/ high-energy physics colliders: Supersymmetric particles can
acquire gauge invariant masses, as the one of the SM-Higgs.

Di↵erent kind of parameters:

Squark and slepton masses m2
q̃, m2

l̃

Gaugino (Majorana) masses Mi, i = 1-3
Trilinear scalar masses (f̃⇤

Lf̃RHi) Af , -µ⇤

Higgsino Mass µ Higgs Mass Parameters |µ|2 + m2
Hi

Physics Beyond the Standard Model Carlos E.M. Wagner, Argonne and EFI



Higgs Potential

• After supersymmetry breaking e�ects are considered, the Higgs
potential reads

V (H1,H2) = m2
1H

†
1H1 + m2

2H
†
2H2 + m2

3(H
T
1 i⇥2H2 + h.c.) +

�1

2

⌅
H†

1H1

⇧2
+

�2

2

⌅
H†

2H2

⇧2
+ �3

⌅
H†

1H1

⇧ ⌅
H†

2H2

⇧
+ �4

⇤⇤�HT
1 i⇥2H2

⇥⇤⇤2

where

�1 = �2 =
g2
1 + g2

2

4
, �3 =

g2
2 � g2

1

4
, �4 = �g2

2

2
(12)

• This e�ective potential is valid at the scale of the SUSY particle
masses.

• The value of the e�ective potential at low energies may be obtained
by evolving the quartic couplings with their renormalization group
equations.
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Lightest SM-like Higgs mass strongly depends on: 

Mh depends logarithmically on the averaged stop mass scale MSUSY  and has a quadratic and 
quartic dep. on the stop mixing parameter  Xt.  [ and on sbotton/stau sectors for large tanbeta] 

For moderate to large values of tan beta and large non-standard Higgs masses  

Analytic expression valid for  MSUSY~ mQ ~ mU 

* CP-odd Higgs mass mA                          * tan beta                           *the top quark mass 

*the stop masses and mixing 

! 

mh
2 " MZ

2 cos2 2#+
3

4$ 2
mt

4

v2
1
2

˜ X t + t +
1

16$ 2
3
2

mt
2

v2 % 32$&3

' 

( 
) 

* 

+ 
, ˜ X t t + t 2( )

- 

. 
/ 

0 

1 
2 

! 

t = log(MSUSY
2 mt

2)

! 

˜ X t =
2Xt

MSUSY
2 1" Xt

2

12MSUSY
2

# 

$ 
% 

& 

' 
( 

! 

Xt = At " µ /tan# $LR stop mixing

M.Carena, J.R. Espinosa, M. Quiros, C.W. ‘95
M. Carena, M. Quiros, C.W.’95

2
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Figure 2. Comparison of the diagrammatic two-loop O(m2
t h

2
t αs) result for mh, to leading order

in mt/MS [eqs. (46) and (47)] with the “mixed-scale” one-loop EFT result [eq. (49)]. Note that

the latter now includes the threshold corrections due to stop mixing in the evaluation of mt(MS) in

contrast to the EFT results depicted in fig. 1. “Mixed-scale” indicates that in the no-mixing and

mixing contributions to the one-loop Higgs mass, the running top quark mass is evaluated at different

scales according to eq. (48). See text for further details. The two graphs above are plotted for

MS = mA = (m2
g̃ + m2

t )
1/2 = 1 TeV for the cases of tan β = 1.6 and tanβ = 30, respectively.
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Standard Model-like Higgs Mass

Carena, Haber, Heinemeyer, Hollik,Weiglein,C.W.’00

Xt = At � µ/ tan�, Xt = 0 : No mixing; Xt =
�

6MS : Max. Mixing

Long list of two-loop computations:  Carena, Degrassi, Ellis, Espinosa, Haber, Harlander, Heinemeyer, Hempfling, 
Hoang, Hollik, Hahn, Martin, Pilaftsis, Quiros, Ridolfi, Rzehak, Slavich, C.W., Weiglein, Zhang, Zwirner

mt = 180 GeV.

For mt = 173 GeV,

the maximum mh

shifts to 127 GeV.

SM-like MSSM Higgs Mass 

At~2.4 MS 

At=0 

2 -loop corrections:      

Many contributions to two loop corrections computations:  
Brignole, M.C., Degrassi,  Diaz, Ellis, Haber, Hempfling, Heinemeyer, Hollik, Espinosa,  Martin, 
 Quiros, Ridolfi, Slavich,  Wagner, Weiglein, Zhang, Zwirner, …  

M.C, Haber, Heinemeyer,  
Hollik,Weiglein,Wagner’00 

! 

mh "130 GeV
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2

as it captures many of the qualitative features that we
will see. We have characterized the scale of superpart-

ner masses with MS ⇥
�
mt̃1mt̃2

⇥1/2
. First, we see that

decreasing tan� always decreases the Higgs mass, inde-
pendent of all the other parameters (keeping in mind that
tan� � 1.5 for perturbativity). So we expect to find a
lower bound on tan� coming from the Higgs mass. Sec-
ond, we see that the Higgs mass depends on Xt/MS as
a quartic polynomial, and in general it has two peaks at
Xt/MS ⌅ ±

⇧
6, the “maximal mixing scenario” [10]. So

we expect that mh = 125 GeV intersects this quartic in
up to four places, leading to up to four preferred values
for Xt/MS . Finally, we see that for fixed Xt/MS , the
Higgs mass only increases logarithmically with MS itself.
So we expect a mild lower bound on MS from mh = 125
GeV.

Now let’s demonstrate these general points with de-
tailed calculations using FeynHiggs. Shown in fig. 1 are
contours of constant Higgs mass in the tan�, Xt/MS

plane, for mQ = mU = 2 TeV (where mQ and mU

are the soft masses of the third-generation left-handed
quark and right-handed up-type quark scalar fields). The
shaded band corresponds to mh = 123 � 127 GeV, and
the dashed lines indicate the same range of Higgs masses
but with mt = 172 � 174 GeV. (The central value in all
our plots will always be mh = 125 GeV at mt = 173.2
GeV.) From all this, we conclude that to be able to get
mh ⌅ 125 GeV, we must have

tan� � 3.5 (2)

So this is an absolute lower bound on tan� just from the
Higgs mass measurement. We also find that the Higgs
mass basically ceases to depend on tan� for tan� beyond
⇤ 20. So for the rest of the paper we will take tan� = 30
for simplicity.

Fixing tan�, the Higgs mass is then a function of Xt

and MS . Shown in fig. 2 are contours of constant mh vs
MS and Xt. We see that for large MS , we want

Xt

MS
⌅ �3, �1.7, 1.5, or 3.5 (3)

We also see that the smallest the A-terms and the SUSY-
scale can absolutely be are

|Xt| � 1000 GeV, MS � 500 GeV. (4)

It is also interesting to examine the limits in the plane
of physical stop masses. Shown in fig. 3 are plots of the
contours of constant Xt in the mt̃2 vs. mt̃1 plane. Here
the values of Xt < 0 and Xt > 0 were chosen to satisfy
mh = 125 GeV, and the solution with smaller absolute
value was chosen. In the dark gray shaded region, no
solution to mh = 125 GeV was found. Here we see that
the t̃1 can be as light as 200 GeV, provided we take t̃2 to
be heavy enough. We also see that the heavy stop has to
be much heavier in general in the Xt < 0 case.

�4 �2 0 2 4
0

5

10

15

20

25

30

Xt�MS

ta
n⇥

FIG. 1. Contour plot of mh in the tan� vs. Xt/MS plane.
The stops were set at mQ = mU = 2 TeV, and the result is
only weakly dependent on the stop mass up to � 5 TeV. The
solid curve is mh = 125 GeV with mt = 173.2 GeV. The band
around the curve corresponds to mh =123-127 GeV. Finally,
the dashed lines correspond to varying mt from 172-174.

�6 �4 �2 0 2 4 6
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2.0

2.5

3.0

Xt �TeV⇥

M
S
�TeV⇥

FIG. 2. Contours of constant mh in the MS vs. Xt plane,
with tan� = 30 and mQ = mU . The solid/dashed lines and
gray bands are as in fig. 1.

III. IMPLICATIONS FOR THE SUSY
BREAKING SCALE

Having understood what mh ⌅ 125 GeV implies for
the weak-scale MSSM parameters, we now turn to the
implications for the underlying model of SUSY-breaking
and mediation. In RG running down from a high scale,
for positive gluino mass M3, the A-term At decreases.
The gluino mass also drives squark mass-squareds larger

Large Mixing in the Stop Sector Necessary

P. Draper, P. Meade, M. Reece, D. Shih’11
L. Hall, D. Pinner, J. Ruderman’11

M. Carena, S. Gori, N. Shah, C. Wagner’11
A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. Quevillon’11

S. Heinemeyer, O. Stal, G. Weiglein’11
U. Elwanger’11

...
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Implications of the Higgs mass determination

Maximal Higgs mass in constrained MSSM scenarios

A. Arbey, M. Battaglia, A. Djouadi, F.M., JHEP 1209 (2012) 107

Several constrained models are excluded or about to be!
But CMSSM is still surviving!

Nazila Mahmoudi Aspen, August 22nd, 2013 5 / 27

Constraints on Different Minimal Models

A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi’12

Models which tend to predict small values of the stop
mixing parameter are strongly constrained. 

(see D. Shih’s talk)
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Soft supersymmetry Breaking Parameters

Large stop sector mixing 
  At > 1 TeV

No lower bound on the lightest stop 
  One stop can be light and the other heavy   

 or
in the case of similar stop soft masses. 

both stops can be below 1TeV

At large tan beta, light staus/sbottoms can decrease
       mh by several GeV’s via Higgs mixing effects 
           and compensate tan beta enhancement 

Intermediate values of tan beta lead to
 the largest values of mh for the same values 

of stop mass parameters 

M. Carena, S. Gori, N. Shah, C. Wagner, arXiv:1112.336, +L.T.Wang, arXiv:1205.5842
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mQ � mU ; m2
t̃1

' m2
U +m2

t

 
1� X2

t

m2
Q

!

Lightest stop coupling to the Higgs approximately
vanishes for Xt ' mQ

Higgs mass pushes us in that direction
Modification of the gluon fusion rate milder
due to this reason.

Light stop coupling to the Higgs

Monday, August 26, 2013



 [GeV]
1t

~m
200 300 400 500 600 700

 [G
eV

]
10 ��

m

0

50

100

150

200

250

300

350

400

1
0
�� t �1t

~0L, 

1
0
�� t �1t

~1L, 

1
0
�� t �1t

~2L, 

1
0
�� W b �1t

~2L, 

1
0
�� c �1t

~0L mono-jet/c-tag, 

1
0

��
+mt

 <
 m

1t~m
1

0
��

 + 
m

W

 + 
m

b

 < 
m

1t~m
1

0
��

 + 
m

c

 < 
m

1t~m

1
0
�� c �1t

~ / 
1
0
�� W b �1t

~ / 
1
0
�� t �1t

~ production, 1t
~
1t

~ Status: EPS 2013

ATLAS Preliminary

-1 = 4.7 fbintL -1 21 fb� intL1
0
��W b 

-1 = 20 fbintL

1
0
��c 

-1 = 20.3 fbintL

Observed limits )theo�Observed limits (-1 Expected limits
 [1203.4171]-1CDF 2.6 fb

0L CONF-2013-024

=8 TeVs -1 = 20 - 21 fbintL =7 TeVs -1 = 4.7 fbintL

1L CONF-2013-037
2L CONF-2013-065
2L CONF-2013-048
0L mono-jet/c-tag CONF-2013-068

0L [1208.1447]
1L [1208.2590]
2L [1209.4186]
-

-

stop limits

 [GeV]
1t

~m
200 300 400 500 600

 [G
eV

]
10 ��

m

0

100

200

300

400

500

)
1

0
�� m!

 = 2 
1

"
�� ( m

1
"
��+m

b < m
1t~m

 < 106 GeV 
1
"

��
 m

+5 G
eV

)

1
0
��

 = m
1

"
��

 ( m
1

"
��+m

b
 < m
1t~m

 < 103.5 GeV
1
"

��
m

Observed limits )theo�Observed limits (-1 Expected limits

1

0
��

 m! = 2 "

1
�m

-1 = 20-21 fbintL
 - 10 GeV

1t
~ = m"

1
�m

-1 = 20.7 fbintL

 + 5 GeV
1

0
��

 =  m"

1
�m

-1 = 20.1 fbintL

 = 150 GeV"

1
�m

-1 = 20.7 fbintL
 = 106 GeV"

1
�m

-1 = 4.7 fbintL

ATLAS Preliminary

Status: LHCP 2013
1
0
�� (*) W�

1
"
��, 

1
"
�� b � 1t

~ production, 1t
~
1t

~

=8 TeVs -1 = 20-21 fbintL =7 TeVs -1 = 4.7 fbintL

0L ATLAS-CONF-2013-053
-
1L ATLAS-CONF-2013-037
2L ATLAS-CONF-2013-048
1L CONF-2013-037, 2L CONF-2013-048

-
2L [1208.4305], 1-2L [1209.2102]
-
-
1-2L [1209.2102]

 + 5 GeV
1
0
��

 = m"
1
�

0L, m
 = 106 GeV"

1
�

1-2L, m
 = 150 GeV"

1
�

1L, m
 - 10 GeV

1t
~ = m"

1
�

2L, m

1
0
��

 m! = 2 "
1
�

1-2L, m

Limits on the Stop Mass

Monday, August 26, 2013



104 106 108 1010 1012 1014 1016 1018
110

120

130

140

150

160

Supersymmetry breaking scale in GeV

H
ig
gs
m
as
sm

h
in
G
eV

Predicted range for the Higgs mass

Split SUSY

High�Scale SUSY

tan⇤ ⇥ 50
tan⇤ ⇥ 4
tan⇤ ⇥ 2
tan⇤ ⇥ 1

Experimentally favored

Figure 3: Next-to-leading order prediction for the Higgs mass mh in High-Scale Supersymmetry

(blue, lower) and Split Supersymmetry (red, upper) for tan ⇥ = {1, 2, 4, 50}. The thickness of

the lower boundary at tan ⇥ = 1 and of the upper boundary at tan ⇥ = 50 shows the uncertainty

due to the present 1⌃ error on �3 (black band) and on the top mass (larger colored band).

matching condition:

⇤⌅(m̃) ⌅ Mm�

4⇧2v2
ln

m̃

M
for m̃ > M (29)

which is irrelevant if M <⇤ 1014 GeV.

5.1 Implications of present Higgs searches at the LHC

Recent data from ATLAS and CMS provide a 99% CL upper bound on the SM Higgs mass of 128

GeV and a hint in favor of a Higgs mass in the 124�126GeV range [17]. The main implications

for the scale of supersymmetry breaking can be read from fig. 3 and are more precisely studied

in fig. 5, where we perform a fit taking into account the experimental uncertainties on the top

mass and the strong coupling.

The scale of Split Supersymmetry is constrained to be below a few 108 GeV. This implies

a significant upper bound on the gluino lifetime [18]

⌥g̃ ⌅
�
TeV

M3

⇥5 � m̃

108 GeV

⇥4

4⇥ 10�4 s. (30)

As the value of tan ⇥ increases, the bound on m̃ becomes rapidly much tighter, see fig. 5. For

instance, for tan ⇥ > 10, the scale of Split Supersymmetry must be below about 104 GeV and

the gluino lifetime must be less than 4⇥ 10�20(M3/TeV)�5 s.

12

Giudice, Strumia’11

Large Stop Masses ?

See also G. Kane, P. Kumar, R. Lu, B. Zheng’12
A. Arvanitaki, N. Craig, S. Dimoupoulos, G. Villadoro’12

 ....
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Higgs Boson Properties

The gauge boson masses still proceed from the kinetic terms

L = (DµHu)
† DµHu + (DµHd)

† DµHd+ ⇥ g2(H†
uWµW

µHu +H†
dWµW

µHd)

Therefore, the order parameter is v =
�
v2u + v2d.

The fermion mass terms proceed from the Yukawa interactions

L = �hdD̄LHddR � huŪLHuuR + h.c.

Therefore, md = hd v cos �, and

L ⇥ �md

v
(h+ tan �H)

and the down sector has tan � enhanced couplings to the non-standard Higgs
bosons.

3
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Radiative Corrections to Flavor Conserving Higgs Couplings

• Couplings of down and up quark fermions to both Higgs fields arise 
after radiative corrections. 

 

• The radiatively induced coupling depends on ratios                                   
of  supersymmetry breaking parameters
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Figure 1: SUSY radiative corrections to the self-energies of the d-quarks

We show that the usual approach of calculating tanβ enhanced FCNC (Flavor Changing
Neutral Currents) effects in the Kaon sector does not agree with the exact results one finds
in the limit of flavor independent masses. Thus, we develop a perturbative approach that
leads to agreement with the exact result in this limit. Finally we study the effects of the
phases of M1, M2, M3 and µ on ∆Ms, BR(Bs → µ+µ−) and ϵK in the cases of uniform and
split squark spectra.

We shall emphasize the implications of the present bounds on BR(Bs → µ+µ−) for future
measurements at the Tevatron collider, both in Higgs as well as in B-physics. In particular,
we shall show that the present bound on BR(Bs → µ+µ−) leads to strong constraints
on possible corrections to both ∆Ms and the Kaon mixing parameters in minimal flavor
violating schemes. Moreover, we shall show that this bound, together with the constraint
implied by the measurement of BR(b → sγ) leads to limits on the possibility of measuring
light, non-standard Higgs bosons in the MSSM.

This article is organized as follows. In section 2, we define our theoretical setup, giving
the basic expressions necessary for the analysis of the flavor violating effects at large values
of tan β. In particular, we show how the first order perturbative expressions in the CKM
matrix elements are inappropriate to define the corrections in the Kaon sector where higher
order effects need to be considered. In section 3 we show the implications of the constraint
on BR(Bs → µ+µ−) for the mixing parameters of the Kaon and B sectors in the large tanβ
regime. In section 4, we explain the implications for Higgs searches at the Tevatron. We
reserve section 5 for our conclusions and some technical details for the appendices.

2 Theoretical Setup

2.1 The resummed effective Lagrangian and the sparticle spec-
trum

The importance of large tan β FCNC effects in supersymmetry has been known for sometime.
The finite pieces of the one-loop self energy diagrams lead to an effective lagrangian for the

2

tan� =
v2

v1
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2
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• Searches at the Tevatron and the LHC are induced by production channels 
associated with the large bottom Yukawa coupling.

• There may be a strong dependence on the parameters in the bb search 
channel, which is strongly reduced in the tau tau mode.

Searches for non-standard Higgs bosons
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How to  test the
region of low tanbeta
and moderate  mA ?

Decays of non-standard
Higgs bosons into paris

of standard ones, charginos
and neutralinos may be 

a possibility.

Can change in couplings help 
there ?

It depends on radiative corrections
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In the MSSM, non-standard Higgs may be produced
via its large couplings to the bottom quark, and

searched for in its decays into bottom quarks and tau leptons
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Figure 1: The MA–tanβ (left) andMH±–tanβ (right) planes in the (updated)mmax
h scenario,

with excluded regions from direct Higgs searches at LEP (blue), and the LHC (solid red);
the dotted (lighter) red region is excluded by LHC searches for a SM-like Higgs boson. The
two green shades correspond to the parameters for which Mh = 125.5± 2 (3) GeV, see text.

The two green colors in Fig. 1 indicate where Mh = 125.5 ± 2 (3) GeV. As discussed
above, the ±3 GeV region should represent a reasonable combination of the current experi-
mental and theoretical uncertainties. The fact that the LHC exclusion region from the SM
Higgs searches does not exactly “touch” the green band is a consequence of taking into ac-
count the theoretical uncertainties in the prediction for the Higgs boson mass in determining
the excluded regions. The incorporation of the theoretical uncertainties is also responsible
for the fact that in Fig. 1 there is no excluded region from the SM Higgs searches at the LHC
for tanβ values above the green region. It may be useful to regard the green region as that
favored by the LHC observation, even though other parameter regions exist that are not
formally excluded (according to the prescription adopted in HiggsBounds [51]). The effects
of the theory uncertainty of ±3 GeV used in the evaluation of the experimental bounds are
displayed in Fig. 2, where we neglect this theory uncertainty. It can be observed that large
parts of the MA–tan β plane (left) and of the MH±–tan β plane (right) would then be ex-
cluded in the mmax

h scenario from the LHC searches for a SM-like Higgs boson. The resulting
excluded region is shown in light red. In particular, for tanβ values above the green band
the predicted Mh value turns out to be too high.

Interpreting the light CP-even Higgs as the new state at ∼ 125.5 GeV, a new conservative
lower bound on tan β in the MSSM can be obtained from the lowest values on the green
bands in Fig. 1 (see Ref. [8] for details). Similarly, the lowest values of MA and MH± in the
green region (i.e., where the green region touches the excluded region from Higgs searches
at the LHC) give a conservative lower bound on these parameters [8]. In particular, from
the right plot of Fig. 1 it follows that MH± < mt is excluded for MSUSY = 1 TeV (if the
light CP-even Higgs is interpreted as the new state at ∼ 125.5 GeV). Raising MSUSY to
higher values, e.g. to 2000 GeV, one finds that MH± < mt might still be marginally allowed.
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Figure 3: The MA–tanβ plane in the mmod+
h (left) and mmod−

h (right) scenarios. The colors
show exclusion regions from LEP (blue) and the LHC (red), and the favored region Mh =
125.5± 2 (3) GeV (green), see the text for details.

Figure 3 shows the bounds on the MA–tanβ parameter space in the mmod+
h (left) and

mmod−
h (right) scenarios, using the same choice of colors as in the mmax

h scenario presented
in the previous section, but from here on we show the full LHC exclusion region as solid
red only.3 As anticipated, there is a large region of parameter space at moderate and large
values of tan β where the mass of the light CP-even Higgs boson is in good agreement with
the mass value of the particle recently discovered at the LHC. Accordingly, the green area
indicating the favored region now extends over almost the whole allowed parameter space of
this scenario, with the exception of a small region at low values of tanβ. From Fig. 3 one
can see that once the magnitude of Xt has been changed in order to bring the mass of the
light CP-even Higgs boson into agreement with the observed mass of the signal, the change
of sign of this parameter has a minor impact on the excluded regions.

As mentioned above, the exclusion limits obtained from the searches for heavy MSSM
Higgs bosons in the τ+τ− and bb̄ final states are significantly affected in parameter regions
where additional decay modes of the heavy MSSM Higgs bosons are open. In particular, the
branching ratios for the decay of H and A into charginos and neutralinos may become large
at small or moderate values of tan β, leading to a corresponding reduction of the branching
ratios into τ+τ− and bb̄. In Fig. 4 we show again the mmod+

h (left) and mmod−
h (right)

scenarios, where the excluded regions from the Higgs searches at LEP and the LHC are as
before. In the upper row of Fig. 4 the color coding for the allowed region of the parameter
space indicates the average value of the branching ratios for the decay of H and A into
charginos and neutralinos (summed over all contributing final states).4 One can see from
the plots that as a consequence of the relatively low values of µ and M2 in this benchmark
scenario decays of H and A into charginos and neutralinos are kinematically open essentially

3The light red color in Fig. 4 has a different meaning.
4The branching ratios into charginos and neutralinos turn out to be very similar for the heavy CP-even

Higgs boson, H , and the CP-odd Higgs boson, A, in this region of parameter space.
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3.2 The mmod

h
scenario

As explained in the discussion of Fig. 1, the mass of the light CP-even Higgs boson in the
mmax

h scenario is in agreement with the discovery of a Higgs-like state only in a relatively
small strip in the MA–tanβ plane at rather low tan β. This was caused by the fact that the
mmax

h scenario was designed to maximize the value of Mh, so that in the decoupling region
this scenario yieldsMh values that are higher than the observed mass of the signal. Departing
from the parameter configuration that maximizes Mh, one naturally finds scenarios where in
the decoupling region the value of Mh is close to the observed mass of the signal over a wide
region of the parameter space. A convenient way of modifying the mmax

h scenario in this way
is to reduce the amount of mixing in the stop sector, i.e. to reduce |Xt/MSUSY| compared to
the value of ≈ 2 (FD calculation) that gives rise to the largest positive contribution to Mh

from the radiative corrections. This can be done for both signs of Xt.
Accordingly, we propose an “mmod

h scenario” which is a modification of the mmax
h scenario

consisting of a reduction of |Xt/MSUSY|. We define two variants of this scenario, the mmod+
h

and the mmod−
h scenario, which differ by their sign (and absolute value) of Xt/MSUSY. While

the positive sign of the product (µM2) results in general in better agreement with the (g−2)µ
experimental results, the negative sign of the product (µAt) yields in general (assuming
minimal flavor violation) better agreement with the BR(b → sγ) measurements (see Ref. [54]
for a recent analysis of the impact of other rare B decay observables, most notably Bs →
µ+µ−). The parameter settings for these two scenarios are:

mmod+
h :

mt = 173.2 GeV,

MSUSY = 1000 GeV,

µ = 200 GeV,

M2 = 200 GeV,

XOS
t = 1.5MSUSY (FD calculation),

XMS
t = 1.6MSUSY (RG calculation),

Ab = Aτ = At,

mg̃ = 1500 GeV,

Ml̃3
= 1000 GeV . (21)

mmod−
h :

mt = 173.2 GeV,

MSUSY = 1000 GeV,

µ = 200 GeV,

M2 = 200 GeV,

XOS
t = −1.9MSUSY (FD calculation),

XMS
t = −2.2MSUSY (RG calculation),

Ab = Aτ = At,

mg̃ = 1500 GeV,

Ml̃3
= 1000 GeV . (22)
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and has widely been used for analyses in the past, we nevertheless regard it as a useful
benchmark scenario also for the future. We therefore include a slightly updated version of
the mmax

h scenario in our list of proposed benchmarks.
We define the parameters of the (updated) mmax

h scenario (with the remaining values as
defined in the previous section) as follows,

mmax
h :

mt = 173.2 GeV,

MSUSY = 1000 GeV,

µ = 200 GeV,

M2 = 200 GeV,

XOS
t = 2MSUSY (FD calculation),

XMS
t =

√
6MSUSY (RG calculation),

Ab = Aτ = At,

mg̃ = 1500 GeV,

Ml̃3
= 1000 GeV . (20)

Besides (as mentioned above) using the current experimental central value for the top quark
mass, the most relevant change in the definition of the mmax

h scenario is an increased value
of the gluino mass, which has been adopted in view of the limits from the direct searches for
SUSY particles at the LHC [14]. It should be noted that slightly higher values of Mh can
be reached if one uses lower values of mg̃ as input. Consequently, slightly more conservative
exclusion bounds on tan β, MA and MH± can be obtained if one uses as input the lowest
possible value for mg̃ that is still allowed in this scenario by the most up-to-date exclusion
bounds from ATLAS and CMS, but with mg̃ ≥ 800 GeV. Similarly, more conservative
exclusion bounds can of course also be obtained by increasing the input value for MSUSY,
for instance by using MSUSY = 2000 GeV and mg̃ = 0.8MSUSY (i.e., the “original” setting
of mg̃ as defined in Ref. [17]), see below. We encourage the experimental collaborations to
take into consideration in their analyses also those extensions of the mmax

h scenario.
In Fig. 1 we show the MA–tanβ plane (left) and the MH±–tan β plane (right) in the

(updated) mmax
h scenario. As explained above, the areas marked as excluded in the plots

have been determined using HiggsBounds 4.0.0-beta [51] (linked to FeynHiggs). The blue
areas in the figure indicate regions that are excluded by LEP Higgs searches, and the red
areas indicate regions that are excluded by LHC searches for a SM Higgs (lighter red) and
for (non-standard) MSSM Higgs bosons (solid red). The solid red region of LHC exclusion in
this plane cuts in from the upper left corner, in the region of large tanβ. The most sensitive
processes here are given by Eq. (1). These processes have an enhanced rate growing with
tanβ. The “cutoff” in the excluded region for MA > 800 GeV (corresponding roughly to
values of tan β above 50) is due to the fact that no experimental limits for MA > 800 GeV
have yet been published.

Furthermore, Fig. 1 shows regions in lighter red (“thin strips” at tanβ values close to
the LEP limit and moderate to large values of MA and MH±), indicating the exclusion of
the light CP-even Higgs boson via SM-Higgs searches at the LHC. In this region the LHC
extends the LEP exclusion bounds for a SM-like Higgs to higher Higgs boson masses.
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(linked to FeynHiggs) using a combined uncertainty on the SM-like Higgs mass of ∆Mh =
3 GeV (∆MH = 3 GeV in the last scenario) when evaluating the limits. While an estimate
of the currently excluded region is given in this way,2 we would like to emphasize that a
main point of this work is to encourage ATLAS and CMS to perform dedicated searches for
MSSM Higgs bosons in these scenarios.

For each benchmark scenario we show the region of parameter space where the mass
of the (neutral CP-even) MSSM Higgs boson that is interpreted as the newly discovered
state is within the range 125.5 ± 3 GeV and 125.5 ± 2 GeV. The ±3 GeV uncertainty is
meant to represent a combination of the present experimental uncertainty of the determined
mass value and of the theoretical uncertainty in the MSSM Higgs mass prediction from
unknown higher-order corrections. Taking into account a parametric uncertainty from the
top quark mass measurements of δmexp

t = 0.9 GeV [50] would result in an even slightly
larger interval of “acceptable” Mh values, while all other features remain the same. The
displayed area with±3 GeV uncertainty should therefore be viewed as being in (conservative)
agreement with a Higgs mass measurement of ∼ 125.5 GeV. In particular, in the case that
the lightest CP-even Higgs is interpreted as the newly discovered state, the couplings of
the h are close to the corresponding SM values (modulo effects from light SUSY particles,
see below). Consequently, those rate measurements from the LHC that agree well with
the SM are then naturally in good agreement also with the MSSM predictions. The area
corresponding to the ±2 GeV uncertainty indicates how the region that is in agreement
with the measured value would shrink as a consequence of reducing the theoretical and
experimental uncertainties to a combined value of 2 GeV.

3.1 The mmax

h
scenario

The mmax
h scenario was originally defined to give conservative exclusion bounds on tan β

in the LEP Higgs searches [15, 17, 18]. The value of Xt was chosen in order to maximize
the lightest CP-even Higgs mass at large values of MA for a given value of tan β (and
all other parameters fixed). Taking into account (besides the latest limits from the Higgs
searches at the Tevatron and the LHC) the observation of a new state at ∼ 125.5 GeV and
interpreting this signal as the light CP-even Higgs, the mmax

h scenario can now be used to
derive conservative lower bounds on MA, MH± and tan β [8].

On the other hand, since the mmax
h scenario has been designed such that the higher-

order corrections maximize the value of Mh, in the decoupling region (MA ≫ MZ) and for
tanβ >∼ 10 this scenario yields Mh values that are significantly higher (above 130 GeV) than
the observed mass of the signal. Compatibility of the predicted values for the mass of the
light CP-even Higgs boson with the mass of the observed signal is therefore achieved only in
a relatively small region of the parameter space, in particular for rather low values of tan β.
However, given that the mmax

h scenario is useful to provide conservative lower bounds on
the parameters determining the MSSM Higgs sector at tree level (MA or MH± and tan β)

2HiggsBounds provides a compilation of cross section limits obtained from Higgs searches at LEP, the
Tevatron and the LHC. For testing whether a particular parameter point of a considered model is excluded,
first the search channel with the highest expected sensitivity for an exclusion is determined, and then the
observed limit is confronted with the model predictions for this single channel only, see Ref. [51] for further
details.

8

Gives the lowest value of tan(beta) 
consistent with the measured Higgs mass

3.2 The mmod

h
scenario

As explained in the discussion of Fig. 1, the mass of the light CP-even Higgs boson in the
mmax

h scenario is in agreement with the discovery of a Higgs-like state only in a relatively
small strip in the MA–tanβ plane at rather low tan β. This was caused by the fact that the
mmax

h scenario was designed to maximize the value of Mh, so that in the decoupling region
this scenario yieldsMh values that are higher than the observed mass of the signal. Departing
from the parameter configuration that maximizes Mh, one naturally finds scenarios where in
the decoupling region the value of Mh is close to the observed mass of the signal over a wide
region of the parameter space. A convenient way of modifying the mmax

h scenario in this way
is to reduce the amount of mixing in the stop sector, i.e. to reduce |Xt/MSUSY| compared to
the value of ≈ 2 (FD calculation) that gives rise to the largest positive contribution to Mh

from the radiative corrections. This can be done for both signs of Xt.
Accordingly, we propose an “mmod

h scenario” which is a modification of the mmax
h scenario

consisting of a reduction of |Xt/MSUSY|. We define two variants of this scenario, the mmod+
h

and the mmod−
h scenario, which differ by their sign (and absolute value) of Xt/MSUSY. While

the positive sign of the product (µM2) results in general in better agreement with the (g−2)µ
experimental results, the negative sign of the product (µAt) yields in general (assuming
minimal flavor violation) better agreement with the BR(b → sγ) measurements (see Ref. [54]
for a recent analysis of the impact of other rare B decay observables, most notably Bs →
µ+µ−). The parameter settings for these two scenarios are:

mmod+
h :

mt = 173.2 GeV,

MSUSY = 1000 GeV,

µ = 200 GeV,

M2 = 200 GeV,

XOS
t = 1.5MSUSY (FD calculation),

XMS
t = 1.6MSUSY (RG calculation),

Ab = Aτ = At,

mg̃ = 1500 GeV,

Ml̃3
= 1000 GeV . (21)

mmod−
h :

mt = 173.2 GeV,

MSUSY = 1000 GeV,

µ = 200 GeV,

M2 = 200 GeV,

XOS
t = −1.9MSUSY (FD calculation),

XMS
t = −2.2MSUSY (RG calculation),

Ab = Aτ = At,

mg̃ = 1500 GeV,

Ml̃3
= 1000 GeV . (22)
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Moderate values of the stop mixing allow 
for consistency with the Higgs mass value in a

broad region of the mA-tan(beta) plane

M. Carena, S. Heinemeyer, O. Stål, C.E.M. Wagner, G. Weiglein,              
arXiv:1302.7033
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Small differences in final analysis... Small excess at 200 GeV 
and tanβ of order 10 ?

Need to control the SM-like Higgs behavior !

Bounds used Final results
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alignment limit with new light scalars not far above mh = 125 GeV. The key observation is

that, while decoupling reaches alignment by neglecting the right-hand side of Eq. (30), the

alignment can be obtained if the right-hand side of Eq. (30) vanishes identically:

v2

⇤

⇧ L11 L12

L12 L22

⌅

⌃

⇤

⇧ �s�

c�

⌅

⌃ = m2
h

⇤

⇧ �s�

c�

⌅

⌃ . (32)

If a solution for the t⇥ can be found, then the alignment limit would occur for arbitrary

values of mA and does not require non-SM-like scalars to be heavy! More explicitly, subject

to Eq. (31), we can re-write the above matrix equation as two algebraic equations:

(C1) : m2
h = v2L11 + t⇥v

2L12 = v2
�
�1c

2
⇥ + 3�6s⇥c⇥ + �̃3s

2
⇥ + �7t⇥s

2
⇥

⇥
, (33)

(C2) : m2
h = v2L22 +

1

t⇥
v2L12 = v2

�
�2s

2
⇥ + 3�7s⇥c⇥ + �̃3c

2
⇥ + �6t

�1
⇥ c2⇥

⇥
. (34)

Recall that that �̃3 = �3 + �4 + �5. In the above Lij is known once a model is specified

and mh is measured to be 125 GeV. Notice that (C1) depends on all quartic couplings in

the scalar potential except �2, while (C2) depends on all quartics but �1. When the model

parameters satisfy Eqs. (33) and (34), the lightest CP-even Higgs behaves exactly like a SM

Higgs boson even if the non-SM-like scalars are light. A detailed analysis on the physical

solutions is presented in the next Section.

IV. ALIGNMENT IN GENERAL 2HDM

The condition (C1) and (C2) may be re-written as cubic equations in t⇥, with coe�cients

that depend on mh and the quartic couplings in the scalar potential,

(C1) : (m2
h � �1v

2) + (m2
h � �̃3v

2)t2⇥ = v2(3�6t⇥ + �7t
3
⇥) , (35)

(C2) : (m2
h � �2v

2) + (m2
h � �̃3v

2)t�2
⇥ = v2(3�7t

�1
⇥ + �6t

�3
⇥ ) , (36)

Alignment without decoupling occurs only if there is (at least) a common physical solution

for t⇥ between the two cubic equations.3 From this perspective it may appear that alignment

without decoupling is a rare and fine-tuned phenomenon. However, as we will show below,

there are situations where a common physical solution would exist between (C1) and (C2)

without fine-tuning.

3 Since t� > 0 in our convention, a physical solution means a real positive root of the cubic equation.
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Alignment Conditions

• If fulfilled not only alignment is obtained, but also the right Higgs 
mass,                     , with                  and 

• For                         the conditions simplify, but can only be fulfilled if  

• Conditions not fulfilled in the MSSM, where both 

�SM = �1 cos
4 � + 4�6 cos

3 � sin� + 2

˜�3 sin
2 � cos

2 � + 4�7 sin
3 � cos� ++�2 sin

4 �

m2
h = �SMv2

�6 = �7 = 0

A. Alignment for vanishing values of �6,7

As a warm up exercise it is useful to consider solutions to the alignment conditions

(C1) and (C2) when �6 = �7 = 0 and �1 = �2, which can be enforced by the symmetries

�1 ⇤ ��2 and �1 ⇤ �2, then (C1) and (C2) collapse into quadratic equations

(C1) ⇤ (m2
h � �1v

2) + (m2
h � �̃3v

2)t2� = 0 , (37)

(C2) ⇤ (m2
h � �1v

2) + (m2
h � �̃3v

2)t�2
� = 0 , (38)

from which we see a physical solution exists for t� = 1, whenever

�SM =
�1 + �̃3

2
(39)

where we have expressed the SM-like Higgs mass as

m2
h = �SMv

2 . (40)

From Eq. (39) we see the above solution leading to t� = 1 is obviously a special one, since

it demands �SM to be the average value of �1 and �̃3.

For the purpose of comparing with previous studies, let’s relax the �1 = �2 condition

while still keeping �6 = �7 = 0. Recall that the Glashow-Weinberg condition [7] on the

absence of tree-level FCNC requires a discrete symmetry, �1 ⇤ ��1, which enforces at the

tree-level �6 = �7 = 0. Then the two quadratic equations have a common root if and only

if the determinant of the Coe⇥cient Matrix of the two quadratic equations vanishes,

Det

�

⇤ m2
h � �̃3v2 m2

h � �1v2

m2
h � �2v2 m2

h � �̃3v2

⇥

⌅ = (m2
h � �̃3v

2)2 � (m2
h � �1v

2)(m2
h � �2v

2) = 0 . (41)

Then the positive root can be expressed in terms of (�1, �̃3),

t(0)� =

⇧
�1 � �SM

�SM � �̃3

. (42)

We see from Eqs. (41) and (42), that t(0)� can exist only if {�SM,�1,�2, �̃3} have one of

the two orderings

�1 ⇥ �SM ⇥ �̃3 and �2 ⇥ �SM ⇥ �̃3 , (43)
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or

�1 ⇥ �SM ⇥ �̃3 and �2 ⇥ �SM ⇥ �̃3 , (44)

It should be emphasized that the existence of the solution t(0)� is generic, in the sense that

once one of the conditions in Eqs. (43) and (44) is statisfied, then Eq. (42) leads to the

alignment solution t(0)� for a given (�1, �̃3). However, Eq. (41) must be also satisfied to solve

for the desired �2 that would make t(0)� a root of (C2). More specifically, the relations

�2 � �SM =
�SM � �̃3�

t(0)�

⇥2 =
�1 � �SM�

t(0)�

⇥4 (45)

must be fulfilled. Therefore, the alignment solution demands a specific fine-tuned relation

between the quartic couplings of the 2HDM. For instance, it is clear from Eqs. (42) and (45
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11

or

�1, �̃3 < �SM

�3 + �4 + �5 = �̃3�SM ' 0.26

M. Carena, I. Low, N. Shah, C.W.’13

Tuesday, November 19, 2013



In this regime,

�SM ' 0.26

�2 ' M2
Z

v2
+

3

8⇡2
h4
t


log

✓
M2

SUSY

m2
t

◆
+

A2
t

M2
SUSY

✓
1� A2

t

12M2
SUSY

◆�

�1 ' ��̃3 =
g21 + g22

4
=

M2
Z

v2
' 0.125

v2L11 = M2
Z cos

2 � + Loop11

v2L12 = �M2
Z cos� sin� + Loop12

v2L22 = M2
Z sin

2 � + Loop22

Only Loop22 relevant 
(stop contribution)

Suppression factor in the LHC channels at 
the 2012--2013 run

M. Carena, P. Draper, T. Liu, C. W. ,arXiv:1107.4354

Wednesday, March 13, 2013

For tan⇥ � 5 and mA � 200 GeV

sin� ' � cos⇥

✓
m2

A +M2
Z

m2
A �m2

h

◆

Down Fermion Couplings for small values of µ

Enhancement of bottom quark and tau couplings independent of tan�

����

����

���

����

��� ⇤ � �

����

��� ��� ��� 	�� ����

��

��

��

��

��

�� �
�
⇥

��
�
⇥

���� ⇤ ������
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in the case of low µ (L1j ⇥ 0), as obtained from Eq. (96), and �d ⌅ 0.

We can reach the same conclusion by using Eq. (21) for s� in this regime,

s� =
�(m2

A +m2
Z)s⇥c⇥⇤

(m2
A +m2

Z)
2s2⇥c

2
⇥ +

�
m2

As
2
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Zc
2
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h

⇥2 , (96)

which, for mA
>� 2mh and moderate t⇥ implies

� s�
c⇥

⌅ m2
A +m2

Z

m2
A �m2

h

. (97)

This clearly demonstrates that in this case the deviation of (�s�/c⇥) from 1 depends only on

mA and is independent of t⇥. In other words, alignment is only achieved in the decoupling

limit, m2
A ⇤ m2

Z ,m
2
h.

This also agrees with our expressions regarding the approach to the alignment limit via

decoupling, Eq. (77). In this regime �5,6,7 are very small implying

B ⌅ m2
A �m2

h, and B �A ⌅ �(m2
Z +m2

h) . (98)

In Fig. 2 we display the value of �s�/c⇥ in the mA � tan⇥ plane, for low values of µ, for

which the radiative corrections to the matrix element L11 and L12 are small, Eq. (96). As

expected from our discussion above, the down-type fermion couplings to the Higgs become
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where as before �Lij denote variation under radiative corrections. We have further sepa-

rated out the corrections to the L12 component into �L12 and �L̃12, which contribute with

di⇥erent t� factors, namely

�L12 = �7, �L̃12 = � (�3 + �4) , �L11 = �5, �L22 = �2. (74)

In the above, we have only kept terms which are relevant for moderate or large values of

t�, and we have included �L22 for future use. In particular, since c� ⇤ 0 in the alignment

limit, we have droped the �1 term that is proportional to c2� and the �6c� term since �6 is

already a small quantity, being generated by radiative corrections. Note that generally the

e⇥ect of �L̃12 on the matrix element L12 will be suppressed for t� ⇥ 1, however, it can lead

to a relevant correction to the tree-level contribution since it has the same t� dependance,

and be also competitive to the radiatively generated �7 contribution.

Regarding the approach to the alignment limit for large t� ⇥ 1, and hence s� ⇤ 1, the

condition in Eqs. (33) and (34) now read

m2
h = �m2

Z + v2
�
�L11 +�L̃12 + t��L12

⇥
, (75)

m2
h = m2

Z + v2
�
�L22 + c2��L̃12 + c��L12

⇥
. (76)

Observe that since for moderate or large values of t�, c2� ⇤ �1 and s� ⇤ 1, the second

expression above just shows that the Higgs mass is strongly governed by �2, while the first

expression shows that one reaches the alignment limit for values of t� given by

t� ⇤ m2
h +m2

Z � v2(�L11 +�L̃12)

v2�L12
=

m2
h � v2�̃3

v2�7
. (77)

The radiative corrections to the matrix elements �L11, �L12 and �L̃12, which depend on

the quartic couplings �̃3 and �7, have been computed previously in the literature [48]. The

expressions of the radiatively corrected quartic couplings are included in the Appendix A.

For small di⇥erences between the values of the two stops, sbottoms and stau masses, one

obtains (references? )
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AtÃt

M2
SUSY

� 6

�
+ h4

b

µ3Ab

M4
SUSY

+
h4
⇥

3

µ3A⇥

M4
⇥̃

⌦
, (78)

v2�L̃12 ⇤
v2

16⇥2

⇧
h4
t

µ2

M2
SUSY

⇤
3� A2

t

M2
SUSY

⌅
+ h4

b

µ2

M2
SUSY

⇤
3� A2

b

M2
SUSY

⌅
+ h4

⇥

µ2

3M2
⇥̃

⇤
3� A2

⇥

M2
⇥̃

⌅⌃
.

(79)

19

Check above equation. Moreover,

v2�L11 ⌅ � v2

32⇤2

⇤
h4
tµ

2A2
t

M4
SUSY

+
h4
bµ

2A2
b

M4
SUSY

+
h4
⇥µ

2A2
⇥

3M4
⇥̃

⌅
, (80)

where, for simplicity, we have ignored two-loop corrections. Hence, from the above, we

see that in the MSSM both v2�L11 and v2�L̃12 tend to be much smaller than m2
h. The

matrix element correction v2�L11 is always negative, but v2�L̃12 can be positive or negative

depending on the magnitude of A2
f/M

2
SUSY/⇥̃ . Since the corrections to �L12 ⇥ ⇥7 are small

compared to its tree-level (but tree-level value is zero. do you mean leading order value?

IL)value, one can write the large t� alignment condition in the MSSM as

tan � ⌅ ⇥SM � ⇥̃tree
3 ��⇥̃3

⇥7
=

120� 32⇤2
�
�L11 +�L̃12

⇥

32⇤2�L12
(81)

where we have made us of the fact that all contributions to ⇥7 in Eq. (78) are proportional to

1/(32⇤2) ⇤ O(1/300) and rescaled both the denominator and numerator by a factor of 32⇤2.

Therefore, in order to obtain sensible values of t� consistent with a perturbative description

of the theory, 0 < t� . 100, it is necessary that 32⇤2�L12 be positive and & 1. (don’t

you need the numerator to be positive at the same time? IL) Since at large values of t� all

the relevant Yukawa couplings are of order one, at least in one of the stop, sbottom or stau

sectors, the condition |µAf |/M2
SUSY > 1 must be fulfilled, where f = b, ⌅ or t .

Observe that for moderate values of |At| <
⇧
6MSUSY, the top contributions become

positive for negative values of At and positive for negative ones. The opposite signs are

obtained for |At| >
⇧
6MSUSY. Interestingly enough, the radiative corrections to ⇥2 (and

therefore to mh) are maximized at |At| ⌅
⇧
6MSUSY and therefore one can get consistency

with the measured mass for values of |At| larger or smaller than
⇧
6MSUSY. On the other

hand, the sbottom and stau contributions to ⇥7 become relevant at large values of t� and

are positive for µAb,⇥ > 0.

Figure 1 shows coutour plots for the quantity 32⇤2�L12 for di⇥erent values of the µ

parameter and positive/negative values of the parameters At. The bottom and Yukawa

coupling are set to zero and 1 in Figures 1(i) and 1(ii), respectively. Moreover, in Figures

1(i) and 1(ii) all Af/MSUSY parameters were taken to be equal, while in Figure 1(iii) opposite

signs were taken for the stop with respect to the sbottom and stau Af parameters. Figure

(1iv) shows the e⇥ect of taking large values of the stobbom and stau trilinear terms Ab,⇥ =

5MSUSY while varying only the stop At parameter.

20

where as before �Lij denote variation under radiative corrections. We have further sepa-

rated out the corrections to the L12 component into �L12 and �L̃12, which contribute with

di⇥erent t� factors, namely

�L12 = �7, �L̃12 = � (�3 + �4) , �L11 = �5, �L22 = �2. (74)

In the above, we have only kept terms which are relevant for moderate or large values of

t�, and we have included �L22 for future use. In particular, since c� ⇤ 0 in the alignment

limit, we have droped the �1 term that is proportional to c2� and the �6c� term since �6 is

already a small quantity, being generated by radiative corrections. Note that generally the

e⇥ect of �L̃12 on the matrix element L12 will be suppressed for t� ⇥ 1, however, it can lead

to a relevant correction to the tree-level contribution since it has the same t� dependance,

and be also competitive to the radiatively generated �7 contribution.

Regarding the approach to the alignment limit for large t� ⇥ 1, and hence s� ⇤ 1, the

condition in Eqs. (33) and (34) now read

m2
h = �m2

Z + v2
�
�L11 +�L̃12 + t��L12

⇥
, (75)

m2
h = m2

Z + v2
�
�L22 + c2��L̃12 + c��L12

⇥
. (76)

Observe that since for moderate or large values of t�, c2� ⇤ �1 and s� ⇤ 1, the second

expression above just shows that the Higgs mass is strongly governed by �2, while the first

expression shows that one reaches the alignment limit for values of t� given by

t� ⇤ m2
h +m2

Z � v2(�L11 +�L̃12)

v2�L12
=

m2
h � v2�̃3

v2�7
. (77)

The radiative corrections to the matrix elements �L11, �L12 and �L̃12, which depend on

the quartic couplings �̃3 and �7, have been computed previously in the literature [48]. The

expressions of the radiatively corrected quartic couplings are included in the Appendix A.

For small di⇥erences between the values of the two stops, sbottoms and stau masses, one

obtains (references? )

v2�L12 ⇤
v2

32⇥2

 
h4
t

µÃt
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(1iv) shows the e⇥ect of taking large values of the stobbom and stau trilinear terms Ab,⇥ =

5MSUSY while varying only the stop At parameter.
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Impact and Size of Loop Corrections

Considering

The condition of alignment reads

where the loop corrections are approximately given by
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the QED effective Lagrangian at one-loop order is given by

Lγγ = −
1

4
FµνF

µν
∑

i

bie2

16π2
log

Λ2

m2
i

+ · · · , (6)

where mi is the mass of the ith particle, Λ is an ultraviolate cutoff, and the beta function

coefficients bi are [1, 2]

b =
4

3
NcQ

2 for a Dirac fermion , (7)

b = −7 for the W boson , (8)

b =
1

3
for a charged scalar . (9)

From the limiting behavior of the analytic expression we find full agreement with Eq. (2).

The −7 coefficient for the W boson can be understood as the sum of 22/3, which is the beta

function coefficient for non-abelian gauge bosons, and −1/3, which comes from the scalar

(longitudinal) components of the massive gauge bosons [1, 2].

Since we are interested in an enhanced γγ width without changing the Higgs production

rate, we only consider new particles carrying no color charges and set Nc = 1 henceforth.

Moreover, if the mass of the new particle depends on the Higgs expectation value,1 mi →

mi(h), and is much heavier thanmh, we can integrate out the heavy new particle and describe

the Higgs coupling to two photons using an effective Lagrangian in a 1/mi expansion. In the

end the hγγ coupling is readily obtained by making the substitution h → h + v in Eq. (6)

and expand to linear order in h:

Lhγγ = −
α

16π

h

v

[

∑

i

2bi
∂

∂ log v
logmi(v)

]

FµνF
µν . (10)

In terms of the notation in Eq. (5),

ghWW

m2
W

=
∂

∂v
logm2

W (v) ,
2ghtt̄
mt

=
∂

∂v
logm2

t (v) . (11)

When there are multiple particles carrying the same electric charge, one can write down a

slightly more general expression

Lhγγ = −
α

16π

h

v

[

∑

i

bi
∂

∂ log v
log

(

detM†
iMi

)

]

FµνF
µν , (12)

1 The new particle does not have to receive all of its mass from the Higgs expectation value, but only some

of it is suffice.
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where in the Standard Model

This generalizes for the case of fermions with contributions to their masses independent 
of the Higgs field. The couplings come from the vertex and the inverse dependence on the 
masses from the necessary chirality flip (for fermions) and the integral functions.
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NcQ

2
S

Ellis, Gaillard, Nanopoulos’76,     Shifman, Vainshtein, Voloshin, Zakharov’79

In the limit of heavy masses, the exact result in Eq. (4) is in full agreement with Eq. (10).

When there are multiple particles carrying the same electric charge, one can write down

a slightly more general expression

Lhγγ =
α

16π

h

v

[

∑

i

bi
∂

∂ log v
log

(

detM†
F,iMF,i

)

+
∑

i

bi
∂

∂ log v
log

(

detM2
B,i

)

]

FµνF
µν ,

(12)

where MF,i and MB,i are the mass matrices of all particles carrying the same electric charge

and spin, and F and B denote fermions and bosons. This expression allows for the possibility

that there could be mass mixing between particles. In particular, we will be focusing on

scenarios where the mass mixing is induced after the electroweak symmetry breaking, which

occurs in many theories beyond the SM.

The form of the effective Higgs coupling to two photons in Eq. (12) makes it straight-

forward to understand the pattern of deviation from SM expectations in the presence of

extra particles running in the loop. As a simple example, we consider the addition of two

new fermions. The same consideration applies to scalars by simple substitutions of mass

matrices. In this case, the mass matrix is a 2× 2 matrix,

M†
fMf =

⎛

⎝

m2
11 m2

12

m∗ 2
12 m2

22

⎞

⎠ , (13)

from which the hγγ coupling is determined from Eq. (12) by

α b1/2
16π

∂

∂v
log

(

detM†
fMf

)

=
α b1/2

16π
(

m2
11m

2
22 − |m2

12|
2
)

(

m2
11

∂

∂v
m2

22 +m2
22

∂

∂v
m2

11 −
∂

∂v

∣

∣m2
12

∣

∣

2
)

. (14)

A few comments are in order. First we assume no mass mixing, m2
12 = 0. In this case it

is interesting to consider the situation where both particles receive all of their masses from

electroweak symmetry breaking, m2
ii = div2, where di > 0 as required by the condition of

positivity of the mass. Then the first two terms in Eq. (14) contribute with the same sign.

This argument suggests that adding a fourth generation quark and/or lepton would always

amplify the effects of SM quarks and/or leptons in the loop-induced decay of the Higgs,

which implies a reduction in the diphoton decay width.2 When turning on the mixing

2 One can apply the same argument to gluon fusion production of the Higgs and arrive at the well-known

7
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Similar considerations apply to the Higgs gluon coupling 
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FIG. 2: Enhancement in the diphoton partial width due to a new charged scalar S.

In general a large ghSS coupling is not preferred because of the vacuum stability and

triviality considerations. However, when there is more than one new scalars and mass

mixing between the scalars exists, we will see that the lighter mass eigenstate could have a

large “effective” ghSS coupling. The canonical example is the mixing between an electroweak

doublet scalar and a singlet scalar carrying the quantum numbers of the left-handed and

right-handed leptons, respectively, which appear in supersymmetry. In this case the mass

mixing occurs only after the electroweak symmetry breaking and requires an insertion of the

Higgs vacuum expectation value, which implies the mass mixing not only affects the mass

eigenvalues, but also directly the coupling of the mass eigenstates to the Higgs boson. If

the two charged scalars have the same electroweak quantum number and the mixing does

not go through a Higgs insertion, then the Higgs coupling to the mass eigenstates depends

on the mixing parameter only implicitly through the mixing angles between the gauge and

mass eigenbasis, which is a rather weak dependence. Therefore, in the following we focus on

the canonical example of mixing between a doublet scalar and a singlet scalar.

Denoting the two charged scalars in the gauge basis by SL and SR, one can write down

the general mass-squared matrix,

M2
S =

⎛

⎝

m̃L(v)2
1√
2
vXS

1√
2
vXS m̃R(v)2

⎞

⎠ , (21)

where XS is a dimensionful parameter characterizing the mass mixing. The mass matrix

9

Similar to light stau scenario,  
M. Carena, S. Gori, N. Shah, C.W.,  arXiv: 1112.3336, 
M. Carena, S. Gori, N. Shah, C.W., L.T.  Wang, arXiv:1205.5842 

Two Scalars with Mixing
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FIG. 4: Left panel: Diphoton partial width normalized to the SM as a function of the mixing

parameter between the two charged scalars. The solid (dashed) line in the Rγγ plots includes both

(only the lightest) mass eigenstates. They are almost on top of each other since the contribution

from the heavy mass eigenstate is tiny. Middle panel: Mass of the lightest (solid, red line) and

heaviest (dashed, blue line) scalar mass eigenstates as a function of the mixing parameter. Right

panel: Effective couplings of the lightest (solid, red line) and heaviest (dashed, blue line) scalar

mass eigenstates as a function of the mixing parameter.

which implies the enhancement is entirely due to the lighter eigenstate S1. An enhancement

by a factor of 1.5 is possible for XS ! 450 GeV, for which mS1
! 120 GeV and cS1

" −1.3.

In general, larger values of mL and mR require larger values of the mixing parameter

XS in order to get a significant enhancement. Parametrically the critical value of XS for a

large enhancement grows with mLmR, which is the positive contribution to the determinant

of the mass-squared matrix. It is easy to see that large values of XS ≫ v induce the

presence of charge breaking minima, deeper than the electroweak one. Hence, scenarios

with XS
>
∼ 1 TeV require additional new physics at the weak scale to stabilize the vacuum.

In all realistic cases, a large enhancement of the Higgs diphoton width demands masses of

scalars below the weak scale.

Light charged scalars have been searched for at colliders. For example, LEP put a lower

bound on the mass of sleptons in supersymmetry that is of the order of 100 GeV [13]. Similar

to the W ′ case, one could postulate a new Z2 parity carried by the new scalar, much like

the R parity carried by the sleptons. While we have not specified a detailed production and

decay mechanism of the charged scalar under consideration, we note that a somewhat large

coupling to the Higgs boson is necessary in order to have a scalar mass heavier than the

15

0 100 200 300 400 500
0.5

1.0

1.5

2.0

2.5

XS !GeV"

R
Γ
Γ

cL"cR"0 and mL"mR"300 GeV

mS2

mS1

0 100 200 300 400 500

100

200

300

400

500

600

XS !GeV"

m
S
!G
eV
"

cL"cR"0 and mL"mR"300 GeV

mS2

mS1

0 100 200 300 400 500

#1.0

#0.5

0.0

0.5

1.0

1.5

XS !GeV"

c S

cL"cR"0 and mL"mR"300 GeV

FIG. 4: Left panel: Diphoton partial width normalized to the SM as a function of the mixing

parameter between the two charged scalars. The solid (dashed) line in the Rγγ plots includes both

(only the lightest) mass eigenstates. They are almost on top of each other since the contribution

from the heavy mass eigenstate is tiny. Middle panel: Mass of the lightest (solid, red line) and

heaviest (dashed, blue line) scalar mass eigenstates as a function of the mixing parameter. Right

panel: Effective couplings of the lightest (solid, red line) and heaviest (dashed, blue line) scalar

mass eigenstates as a function of the mixing parameter.

which implies the enhancement is entirely due to the lighter eigenstate S1. An enhancement

by a factor of 1.5 is possible for XS ! 450 GeV, for which mS1
! 120 GeV and cS1

" −1.3.

In general, larger values of mL and mR require larger values of the mixing parameter

XS in order to get a significant enhancement. Parametrically the critical value of XS for a

large enhancement grows with mLmR, which is the positive contribution to the determinant

of the mass-squared matrix. It is easy to see that large values of XS ≫ v induce the

presence of charge breaking minima, deeper than the electroweak one. Hence, scenarios

with XS
>
∼ 1 TeV require additional new physics at the weak scale to stabilize the vacuum.

In all realistic cases, a large enhancement of the Higgs diphoton width demands masses of

scalars below the weak scale.

Light charged scalars have been searched for at colliders. For example, LEP put a lower

bound on the mass of sleptons in supersymmetry that is of the order of 100 GeV [13]. Similar

to the W ′ case, one could postulate a new Z2 parity carried by the new scalar, much like

the R parity carried by the sleptons. While we have not specified a detailed production and

decay mechanism of the charged scalar under consideration, we note that a somewhat large

coupling to the Higgs boson is necessary in order to have a scalar mass heavier than the

15

M. Carena, I. Low, C.W., arXiv:1206.1082

Negative Effective                
Coupling of lightest 
scalar

Tuesday, November 19, 2013

Effective coupling



Higgs Production in the di-photon channel in the MSSM  

.  M.C, Gori, Shah, Wagner 

  for Mh ~ 125 GeV  

Contours of constant  

! 

" gg#h( )Br(h#$$ )
" gg#h( )SM Br(h#$$ )SM

Light staus with large mixing  
   [sizeable µ and tan beta]: 
     ! enhancement of the  
 Higgs to di-photon decay rate   

Charged scalar particles with no color charge can change di-photon rate  
without modification of the gluon production process  

M. Carena, S. Gori, N. Shah, C. Wagner, arXiv:1112.336, +L.T.Wang, arXiv:1205.5842

For a more generic discussion of modified diphoton width by new charged particles,                        
see M. Carena, I. Low and C. Wagner, arXiv:1206.1082 

Higgs Decay into two Photons in the MSSM

X⌧ = A⌧ � µ tan�

we define the quantity

rgg =
Γ(h → gg)MSSM

Γ(h → gg)SM
, (25)

which gives a rough approximation of the relative suppression of σ(gg → h)MSSM. The
bounds on the parameter space (as before obtained with HiggsBounds) are similar to the
ones obtained in the mmod

h scenarios. However, the gluon fusion rate is between 10% and
15% lower than in the SM, as expected from Eq. (23).6

3.4 The light stau scenario

While light stops may lead to a large modification of the gluon fusion rate, with a relative
minor effect on the diphoton rate, it has been shown that light staus, in the presence of large
mixing, may lead to important modifications of the diphoton decay width of the lightest CP-
even Higgs boson, Γ(h → γγ) [10,62]. Large mixing in the stau sector may happen naturally
for large values of tan β, for which the mixing parameter Xτ = Aτ − µ tanβ becomes large.
Similarly to the modifications of the gluon fusion rate in the light stop scenario, one can
use the low energy Higgs theorems [58] to obtain the modifications of the decay rate of the
Higgs boson to photon pairs. The correction to the amplitude of Higgs decays to diphotons
is approximately given by [10, 59]

δAhγγ/ASM
hγγ ≃ −

2 m2
τ

39 m2
τ̃1
m2

τ̃2

(

m2
τ̃1
+m2

τ̃2
−X2

τ

)

, (26)

where ASM
hγγ denotes the diphoton amplitude in the SM.

Due to the large tanβ enhancement Xτ is naturally much larger than the stau masses and
hence the corrections are positive and become significant for large values of tan β. As stressed
above, the current central value of the measured diphoton rate of the state discovered at the
LHC is somewhat larger than the expectations for a SM Higgs, which adds motivation for
investigating the phenomenology of a scenario with an enhanced diphoton rate. We therefore
propose a light stau scenario. In the definition of the parameters we distinguish the cases
whether or not τ mass threshold corrections, ∆τ , are incorporated in the computation of the
stau spectrum (this is the case in CPsuperH, but not in the present version of FeynHiggs).
We mark the case where those corrections are included as “(∆τ calculation)”. We define the
parameters of the light stau scenario as follows:

light stau:

mt = 173.2 GeV,

MSUSY = 1000 GeV,

µ = 500 GeV,

6The feature visible in the LHC excluded region for aboutMA = 500 GeV and low values of tanβ is caused
by the fact that HiggsBounds uses only the channel with the highest expected sensitivity for determining
whether a parameter point is excluded. The shape of the excluded region is caused by a boundary to a
different channel that has the highest expected sensitivity for exclusion but whose observed limit turns out
not to provide an exclusion of this parameter region. Features of this kind are expected to be absent in
dedicated combined analyses that allow to simultaneously take into account information from more than one
channel.
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XOS
t = 2.0MSUSY (FD calculation),

XMS
t = 2.2MSUSY (RG calculation),

Ab = At = Aτ ,

mg̃ = 1500 GeV,

Ml̃3
= 1000 GeV . (24)

These parameters lead to a lighter stop and a heavier stop mass of about 325 GeV and
670 GeV, respectively, and a negative correction of the gluon fusion amplitude of about 8%.
The light stop scenario can be regarded as an update of the gluophobic Higgs scenario defined
in Ref. [17].

The values of µ andM2 in the light stop scenario have been chosen to be in agreement with
the current exclusion bounds on direct light stop production at the LHC [60]. The two-body
decay modes that are kinematically open are t̃1 → bχ̃+

1 and t̃1 → cχ̃0
1 with mχ̃±

1

≈ 295 GeV
and mχ̃0

1
≈ 163 GeV. The first decay results in very soft decay products. While the latter

decay is expected to be suppressed in minimal flavor violating schemes, it could in general
be sizable. Analyses have been performed at the Tevatron [61]; however, currently there are
no dedicated LHC searches in this channel. If this channel turned out to be relevant, due to
its difficult final state it would pose a challenge to the experimental analyses.

There is also a correction to the diphoton amplitude, but since in the diphoton case
the dominant SM contribution comes from W loops, which are of opposite sign and about
a factor 4 larger than the top contributions, the stop contributions lead to only a small
modification, smaller than about 3%, of this amplitude.

Figure 6 shows the MA–tanβ plane in the light stop scenario, as well as a comparison of
the gluon fusion rates for h production to those obtained in the SM. For this comparison,

Figure 6: The MA–tanβ plane in the light stop scenario; left: with the same color coding
as in Fig. 3; right: the resulting suppression of the gluon fusion rate, as indicated by the
legend.
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from this channel tend to be weaker than those from ττ searches, and they are therefore not
explicitly visible in Fig. 3. In order to display the effect of the corrections to the bottom
Yukawa coupling we focus now explicitly on the channel bb̄φ,φ → bb̄, where φ = h,H,A.
Using the latest result from CMS for this channel [55], Fig. 5 shows the reach in the MA–
tanβ plane of the mmod+

h (left) and mmod−
h (right) scenarios for µ = ±200 GeV,±1000 GeV

(see also [56]).5 In the mmod+
h scenario one can observe a very large variation with the sign

and absolute value of µ. For example, for MA = 250 GeV one finds for µ = −1000 GeV an
exclusion in tan β down to about tanβ = 20, while for the reversed sign of µ the excluded
region starts only above tan β = 50. The dependence on µ is less pronounced in the mmod−

h

scenario, i.e. for negative values of Xt, which is a consequence of a partial compensation
between the main contributions to ∆b, see Eq. (14).

3.3 The light stop scenario

The measured value of the lightest CP-even Higgs mass of about 125.5 GeV may only be
achieved in the MSSM by relatively large radiative contributions from the top–stop sector.
It is well known that this can only be obtained if the mixing parameter Xt in the stop
sector is larger than the average stop mass. The dependence of Mh on the stop mass scale is
logarithmic and allows for values ofMSUSY below the TeV scale. Values ofMSUSY significantly
below the TeV scale are still possible if Xt is close to the value that maximizes the lightest
CP-even Higgs mass (or, to a lesser extent, close to the maximum for negative values of Xt).
Such a large value of |Xt| and a relatively low value of MSUSY necessarily lead to the presence
of a light stop. Such a light stop may be searched for in direct production at the LHC, but
has also a relevant impact on the lightest CP-even Higgs production rates. In particular, a
light stop may lead to a relevant modification of the gluon fusion rate [17, 57].

The contribution of light stops to the gluon fusion amplitude may be parametrized in
terms of the physical stop masses and the mixing parameter. Making use of low energy
theorems [58] it is easy to see that the stops give rise to an additional contribution to the
gluon fusion amplitude which is approximately given by [59]

δAhgg/ASM
hgg ≃

m2
t

4m2
t̃1
m2

t̃2

(

m2
t̃1
+m2

t̃2
−X2

t

)

, (23)

where ASM
hgg denotes the gluon fusion amplitude in the SM. Values of Xt in the range

2MSUSY ! Xt ! 2.5MSUSY then lead to negative contributions to this amplitude and to
reduced values of the gluon fusion rate. We propose a light stop scenario with the following
parameters,

light stop:
mt = 173.2 GeV,

MSUSY = 500 GeV,

µ = 350 GeV,

M2 = 350 GeV,

5We have verified our implementation of this limit against the results from CMS [55], which are given
for the (original) mmax

h scenario with µ = ±200 GeV. The “zig-zag”-type variation of the bounds originates
from the original bounds in Ref. [55].
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FIG. 1: Stop mass parameters as a function of the lightest stop mass for the four scenarios listed in

Tab. I. Cases (a) and (b) are shown in the two shaded regions bounded by dashed and dotted lines

respectively. Cases (c) and (d) are represented by horizontal and vertical hatching respectively. For

each value of mu3 , values of At are such that the computed Higgs mass is in the range 122.5 GeV <

mh < 128.5 GeV. This range represents a 3 GeV theoretical uncertainty in the mh computation.

The blue contours denote larger values of At and the red contours correspond to the lower values

of At for a fixed Higgs mass.

TABLE I: Parameters defining the di�erent scenarios shown in figures.

Cases tan� m�̃1 (GeV) me3 (GeV) µ (GeV) mQ3 (TeV) A� (TeV) mA (TeV)

(a) Shaded dashed 70 95 250 380 2 0 2

(b) Shaded dotted 70 95 230 320 2 1 1

(c) Horizontal hatch 105 95 240 225 2 1 1

(d) Vertical hatch 70 100 300 575 3 1.5 1

stop mass. The staus are always kept light, and highly mixed, so even for large values of

the stop masses, the BR(h ⇥ ��) remains enhanced.

For a given mQ3 � mu3 , there are two solutions of At for each Higgs mass: one generically

larger than mQ3 and the other smaller than it. As discussed earlier, the gluon fusion rate
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Variation of Production Cross sections and Decay Rates

mτ = 95 GeV

(i) (ii)

(iii)

FIG. 2: (i) Higgs production via gluon fusion and (ii) its decay into ��, normalized to the SM

value, as a function of the lightest stop mass for the cases listed in Tab. I. (iii) The �� rate, again

normalized to the SM value, as a function of the lightest stop mass. We use the same conventions

as described in Fig. 1.
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from this channel tend to be weaker than those from ττ searches, and they are therefore not
explicitly visible in Fig. 3. In order to display the effect of the corrections to the bottom
Yukawa coupling we focus now explicitly on the channel bb̄φ,φ → bb̄, where φ = h,H,A.
Using the latest result from CMS for this channel [55], Fig. 5 shows the reach in the MA–
tanβ plane of the mmod+

h (left) and mmod−
h (right) scenarios for µ = ±200 GeV,±1000 GeV

(see also [56]).5 In the mmod+
h scenario one can observe a very large variation with the sign

and absolute value of µ. For example, for MA = 250 GeV one finds for µ = −1000 GeV an
exclusion in tan β down to about tanβ = 20, while for the reversed sign of µ the excluded
region starts only above tan β = 50. The dependence on µ is less pronounced in the mmod−

h

scenario, i.e. for negative values of Xt, which is a consequence of a partial compensation
between the main contributions to ∆b, see Eq. (14).

3.3 The light stop scenario

The measured value of the lightest CP-even Higgs mass of about 125.5 GeV may only be
achieved in the MSSM by relatively large radiative contributions from the top–stop sector.
It is well known that this can only be obtained if the mixing parameter Xt in the stop
sector is larger than the average stop mass. The dependence of Mh on the stop mass scale is
logarithmic and allows for values ofMSUSY below the TeV scale. Values ofMSUSY significantly
below the TeV scale are still possible if Xt is close to the value that maximizes the lightest
CP-even Higgs mass (or, to a lesser extent, close to the maximum for negative values of Xt).
Such a large value of |Xt| and a relatively low value of MSUSY necessarily lead to the presence
of a light stop. Such a light stop may be searched for in direct production at the LHC, but
has also a relevant impact on the lightest CP-even Higgs production rates. In particular, a
light stop may lead to a relevant modification of the gluon fusion rate [17, 57].

The contribution of light stops to the gluon fusion amplitude may be parametrized in
terms of the physical stop masses and the mixing parameter. Making use of low energy
theorems [58] it is easy to see that the stops give rise to an additional contribution to the
gluon fusion amplitude which is approximately given by [59]
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where ASM
hgg denotes the gluon fusion amplitude in the SM. Values of Xt in the range

2MSUSY ! Xt ! 2.5MSUSY then lead to negative contributions to this amplitude and to
reduced values of the gluon fusion rate. We propose a light stop scenario with the following
parameters,

light stop:
mt = 173.2 GeV,

MSUSY = 500 GeV,

µ = 350 GeV,

M2 = 350 GeV,

5We have verified our implementation of this limit against the results from CMS [55], which are given
for the (original) mmax

h scenario with µ = ±200 GeV. The “zig-zag”-type variation of the bounds originates
from the original bounds in Ref. [55].
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we define the quantity

rgg =
Γ(h → gg)MSSM

Γ(h → gg)SM
, (25)

which gives a rough approximation of the relative suppression of σ(gg → h)MSSM. The
bounds on the parameter space (as before obtained with HiggsBounds) are similar to the
ones obtained in the mmod

h scenarios. However, the gluon fusion rate is between 10% and
15% lower than in the SM, as expected from Eq. (23).6

3.4 The light stau scenario

While light stops may lead to a large modification of the gluon fusion rate, with a relative
minor effect on the diphoton rate, it has been shown that light staus, in the presence of large
mixing, may lead to important modifications of the diphoton decay width of the lightest CP-
even Higgs boson, Γ(h → γγ) [10,62]. Large mixing in the stau sector may happen naturally
for large values of tan β, for which the mixing parameter Xτ = Aτ − µ tanβ becomes large.
Similarly to the modifications of the gluon fusion rate in the light stop scenario, one can
use the low energy Higgs theorems [58] to obtain the modifications of the decay rate of the
Higgs boson to photon pairs. The correction to the amplitude of Higgs decays to diphotons
is approximately given by [10, 59]

δAhγγ/ASM
hγγ ≃ −

2 m2
τ

39 m2
τ̃1
m2

τ̃2

(

m2
τ̃1
+m2

τ̃2
−X2

τ

)

, (26)

where ASM
hγγ denotes the diphoton amplitude in the SM.

Due to the large tanβ enhancement Xτ is naturally much larger than the stau masses and
hence the corrections are positive and become significant for large values of tan β. As stressed
above, the current central value of the measured diphoton rate of the state discovered at the
LHC is somewhat larger than the expectations for a SM Higgs, which adds motivation for
investigating the phenomenology of a scenario with an enhanced diphoton rate. We therefore
propose a light stau scenario. In the definition of the parameters we distinguish the cases
whether or not τ mass threshold corrections, ∆τ , are incorporated in the computation of the
stau spectrum (this is the case in CPsuperH, but not in the present version of FeynHiggs).
We mark the case where those corrections are included as “(∆τ calculation)”. We define the
parameters of the light stau scenario as follows:

light stau:

mt = 173.2 GeV,

MSUSY = 1000 GeV,

µ = 500 GeV,

6The feature visible in the LHC excluded region for aboutMA = 500 GeV and low values of tanβ is caused
by the fact that HiggsBounds uses only the channel with the highest expected sensitivity for determining
whether a parameter point is excluded. The shape of the excluded region is caused by a boundary to a
different channel that has the highest expected sensitivity for exclusion but whose observed limit turns out
not to provide an exclusion of this parameter region. Features of this kind are expected to be absent in
dedicated combined analyses that allow to simultaneously take into account information from more than one
channel.
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Light Staus can enhance the diphoton decay width
Light stops can either enhance or suppress gluon copling
Combination can lead to large variations of production in

both gluon fusion and weak boson fusion (ratios of 
branching ratios)
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