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Superspace

What is it? It is a space with coordinates:

z ≡ { xµ , θα , θ†α̇ } (1)

θ and θ† are complex constant anticommuting spinors with mass
dimension [−1

2 ]

Why do we need it? Because global SUSY transformations are
infinitesimal translations in superspace

xµ −→ xµ + iεσµθ† + iε†σ̄µθ , (2)

θ −→ θ + ε , (3)

θ† −→ θ† + ε† . (4)



Superfields
What are they? They are functions of superspace

S(xµ, θ, θ†) (5)

Why do we need them? To construct SUSY invariant Lagrangians.
Therefore, we need SUSY transformation of (local) superfields :

√
2δεS = −i(εQ̂ + ε†Q̂†)S

= S ′(z)− S(z) . (6)

where the differential operators that act on superfields are

Q̂α = i
∂

∂θα
− (σµθ†)α∂µ , Q̂†α̇ = i

∂

∂θ†α̇
− (σ̄µθ)α̇∂µ . (7)

Exercise 1:
Prove that Q̂ and Q̂† close into SUSY algebra with P̂µ = i∂µ:

{Q̂α, Q̂†α̇} = 2 σµαα̇ P̂µ , {Q̂α, Q̂β} = 0 , {Q̂†α̇, Q̂
†
β̇
} = 0 .
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Superfields
To make contact with the real world we must extract the
x-components of a given superfield. This can be done because of
its finite term expansion in terms of θ’s and θ†’s

S(x , θ, θ†) = a + θξ + θ†χ† + θθb + θ†θ†c

+ θ†σ̄µθvµ + θ†θ†θη + θθθ†ζ† + θθθ†θ†d (8)

The expansion terminates because

{θα, θβ} = {θ†α̇, θ
†
β̇
} = {θα, θ†

β̇
} = 0

Exercise 2:
Starting from eqs.(6,7) prove the SUSY transformations for the
various component fields of S in eq.(8). Show, for example, that√

2δεa = εξ + ε†ξ† and
√

2δεξα = 2εαb + (σµε†)α(vµ − i∂µa), and√
2δεb = ε†ζ† − i

2ε
†σ̄µ∂µξ.
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Covariant Derivatives

Action functionals depend on derivatives too, so we need covariant
derivatives acting on superfields. The obvious choice ∂/∂θα does
not work since it is not supersymmetric

δε
∂S

∂θα
6= ∂

∂θα
(δεS) (9)

We therefore need covariant derivatives that all (anti)commute
with δε ∼ εQ̂ + ε†Q̂†.

Exercise 3:
Prove that the following covariant derivatives

Dα =
∂

∂θα
− i(σµθ†)α∂µ , D†α̇ = − ∂

∂θ†α̇
+ i(θσµ)α̇∂µ . (10)

anticommute with Q̂ and Q̂†. Therefore e.g., δε(DαS) = Dα(δεS).
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Chiral Superfields

We now want to write the Wess-Zumino model in a manifestly
covariant form. We need spin-0 and spin-1/2 fields. What
superfield to use? The S has too many components! We need only
a supermultiplet with φ, ψ and F fields!!

The right constraint to use is

D†α̇Φ = 0 (11)

A superfield subject to this (covariant) condition is called chiral (or
left chiral) superfield. Similarly,

DαΦ∗ = 0 (12)

is called anti-chiral (or right chiral) superfield.

Note that there is no need to apply e.o.m for component fields.
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Chiral Superfields

We can solve the constraint (11) by writing Φ as a function of y
and θ, where

yµ ≡ xµ + iθ†σ̄µθ (13)

and note that D†α̇y
µ = D†α̇θ

β = 0. Then the superfield Φ(y , θ)

automatically satisfies the constraint D†α̇Φ = 0.

Next, Taylor expand Φ(y , θ) around x

Φ(y , θ) = φ(y) +
√

2θψ(y) + θθF (y)

= φ(x) + iθ†σ̄µθ∂µφ(x)− 1

4
θθθ†θ†�φ(x) +

√
2θψ(x)

− i√
2
θθθ†σ̄µ∂µψ(x) + θθF (x) (14)

The Φ superfield contains the same fields needed for the
Wess-Zumino model!
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Chiral Superfields

Exercise 4:
Apply the results of Ex. 2 to a chiral superfield in order to confirm
the SUSY transformations for φ, ψ and F fields in WZ-model given
in eqs. (11-13, Lec. I).

Note that the “F-term”

δεF = −i ε† σ̄µ ∂µψ , (15)

transforms as a total derivative.
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Vector Superfields

It is obtained from the constraint

V = V ∗ (16)

This imposes certain constraints on S-component fields in (8) e.g.,
vµ = v∗µ ≡ Aµ and finally with redefinitions

V (x , θ, θ†) = a + θξ + θ†ξ† + θθb + θ†θ†b∗

+ θ†σ̄µθAµ + θ†θ†θ(λ− i

2
σµ∂µξ

†) + θθθ†(λ† − i

2
σ̄µ∂µξ)

+ θθθ†θ†(
1

2
D − 1

4
�a) (17)

If Φ is a chiral superfield then Φ + Φ∗, i(Φ− Φ∗) and Φ∗Φ are all
real (vector) superfields



Vector Superfields
We need a gauge supermultiplet: a gauge boson (Aµ) [mass]1, a

gaugino (λ) [mass]
3
2 and an auxiliary field, (D) [mass]2.

V in eq.(17) has too many components. However, we still have
gauge freedom to use. Suppose that V is a vector superfield for an
Abelian gauge symmetry and consider the “gauge” transformation

V → V + i (Ω∗ − Ω) (18)

where Ω = φ+
√

2θψ + θθF + ... is a chiral superfield. Then

a→ a + i(φ∗ − φ) (19)

ξα → ξα − i
√

2ψα (20)

b → b − iF (21)

Aµ → Aµ + ∂µ(φ+ φ∗) (22)

λα → λα (23)

D → D (24)
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Vector Superfields

Wess-Zumino gauge : Eliminate a, ξα, b from V .

V (x , θ, θ†)WZ = θ†σ̄µθAµ + θ†θ†θλ+ θθθ†λ† +
1

2
θθθ†θ†D (25)

This is not manifestly supersymmetric but by supergauge
transformations [eqs.(19-24)] we can always restore δεV into
WZ-gauge.

Exercise 5:
Prove that D transforms as a total derivative,

δεD = −iεσµ∂µλ† − iε†σ̄µ∂µλ.
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Building Lagrangians with Superfields
For a general superfield it is always valid that

δεA = 0 , for A =

∫
d4x

∫
d2θ

∫
d2θ† S(x , θ, θ†) (26)

The D-term of a real superfield transforms as a total derivative,
therefore

[V ]D ≡
∫

d2θ

∫
d2θ† V (x , θ, θ†) = V (x , θ, θ†)|θθθ†θ†

=
1

2
D − 1

4
∂µ∂

µa (27)

The F-term of a chiral superfield transforms also as total derivative

[Φ]F ≡
∫

d2θΦ|θ†=0 = Φ|θθ =

∫
d2θ

∫
d2θ† δ(2)(θ†)Φ = F (28)

The action should be real so we need [Φ]F + c.c.
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Building the WZ-Lagrangian with chiral Superfields

Simple! Take a D-term and a F-term

SWZ =

∫
d4x [Φ∗iΦi ]D + ([W (Φi )]F + c.c) (29)

W (Φi ) can be any holomorphic function of chiral superfields and is
called superpotential. A simple choice is (also used in MSSM)

W (Φ) =
1

2!
M ijΦiΦj +

1

3!
y ijkΦiΦjΦk (30)

Exercise 6:
Start from the superfield WZ-action (29) and find the WZ-model
written in terms of component fields given in eq.(10, Lec. I).
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Gauge transformation of chiral superfields

We want now to describe superfield Lagrangians with spin-1
particles.

Global transformation of a chiral superfield:

Φ→ e2iα(a) T (a)
Φ (31)

T (a) hermitian generators of the group in rep R of an internal
(unbroken) symmetry group.

Gauge this symmetry: α(a) → Ω(a). The full local symmetry
transformation is

Φ→ e2i Ω(a) T (a)
Φ (32)

It must be D†Φ = 0⇒ D†Ω(a) = 0, i.e., Ω = chiral superfield



Building Ls with chiral and vector superfields

Assume

S =

∫
d4x [Φ∗Φ]D + ([W (Φ)]F + c.c)

is invariant under global transformations (31). Now gauge this:
2α(a)T (a) → 2g (a)Ω(a)T (a) ≡ Ω. The kinetic term is not invariant
since

Φ∗Φ→ Φ∗ e−iΩ
∗
e iΩ Φ

To restore gauge invariance introduce a vector superfield V ∗ = V
such that [V ≡ 2g (a)V (a)T (a)]

eV → e iΩ
∗
eV e−iΩ

and write the action as

S =

∫
d4x [Φ∗eV Φ]D + ([W (Φ)]F + c.c)

which is now gauge invariant! It admits the WZ-gauge option too...



Building Ls with chiral and vector superfields (cont’d)

Exercise 7:
By working in WZ-gauge expand the Lagrangian kinetic term in
components to find:

[Φ∗i (eV )jiΦj ]D = F ∗i Fi + ∇µφ∗i ∇µφi + iψ†i σ̄µ∇µψi

−
√

2 gα (φ∗T (a)ψ) λ(a) −
√

2 gα λ
†(a) (ψ†T (a)φ)

+ ga (φ∗T (a)φ) D(a) (33)

where the gauge covariant derivatives are

∇µφi = ∂µφi − igaA(a)
µ (T (a)φ)i

∇µφ∗i = ∂µφ
∗i + igaA(a)

µ (φ∗T (a))i

∇µψi = ∂µψi − igaA(a)
µ (T (a)ψ)i



Building Ls with Abelian vector superfields
We also need a strength tensor superfield analog to construct
gauge kinetic terms like FµνFµν . It is

Wα = −1

4
D†D†DαV , W†α̇ = −1

4
DDD†α̇V , (34)

It has dimension [mass]3/2 and it is chiral superfield (with spinor
index!)

In WZ-gauge and in y -space it is

Wα(y , θ) = λα + θαD +
i

2
(σµσ̄νθ)αFµν + iθθ(σµ∂µλ

†)α (35)

Therefore the action functional for the kinetic terms is

S =

∫
d4x

1

4
[WαWα]F+c.c =

∫
d4x

[
1

2
D2+iλ†σ̄µ∂µλ−

1

4
FµνFµν

]
Exercise 8:
In the Abelian case prove that Wα is invariant under (super)gauge
transformations, V → V + i(Ω∗ − Ω).



Building Ls with Abelian vector superfields

A Fayet-Iliopoulos term

LFI = −2κ[V ]D = −κD

is super gauge allowed. This term plays role in spontaneous SUSY
breaking (see lecture IV).



Building Ls with non-Abelian vector superfields

In the non-Abelian case the field strength superfield is defined as

Wα = −1

4
D†D†(e−VDαe

V )

Under super gauge transformations it goes like

Wα → e iΩWαe
−iΩ

and

[W(a) αW(a)
α ]F = D(a)D(a) + 2iλ(a)σµ∇µλ†(a) − 1

2
F (a)µνF (a)

µν

+
i

4
εµνρσF (a)

µν F
(a)
ρσ (36)

and

S =

∫
d4x Tr [WαWα]F + c.c
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The renormalizable SUSY Lagrangians

The most general renormalizable action with matter and gauge
fields is

L =

(
1

4
[W(a) αW(a)

α ]F + c.c

)
+

[
Φ∗i (e2gaT (a)V (a)

)ji Φj

]
D

+
(
[W (Φ)]F + c.c

)
(37)

where the super potential is gauge invariant and a holomorphic
function of Φ’s of at most the third power. All terms are fixed by
symmetry apart from those in W (Φ).

In components just replace the relevant terms in eq.(37) with
eqs.(36,33) and eq.(17, Lec. I).
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The non-renormalizable SUSY Lagrangians
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(Super) Feynman Rules and Supergraphs

Following QFT for superfields, we can devise SFeynman Rules.

We can then use perturbation theory with Supergraphs

The “arrows” notation for Supergraphs is similar to that of normal
Feynman diagrams with Weyl spinors, but the FRs for vertices and
propagators involve superspace “D-algebra” technics that need
certain familiarity.

Supergraphs are getting very complicated when SUSY and gauge
symmetries are broken (I have never seen a paper calculating the
mass of the Higgs boson in MSSM with supergraphs! Component
diagrams are far easier!!)

If you insist on learning supergraphs, start with Wess and Bagger
chapters IX-X and then read the classic masterpiece by Grisaru,
Siegel and Rocek cited at the end of this lecture.



R-symmetries
U(1)R -symmetry is a continuous global symmetry that transforms
the anti-commuting superspace coordinates

θ → e iα θ , θ† → e−iα θ† (39)

Therefore if the theory is invariant under R-symmetry

S(x , θ, θ†)→ e irSα S(x , e−iαθ, e iαθ†) (40)

For the components of a chiral superfield Φ this means

φ→ e irΦαφ , ψ → e i(rΦ−1)αψ , F → e i(rΦ−2)αF (41)

V -superfield has R-charge zero because it is real. In the WZ-gauge
its components transform as

Aµ → Aµ , λ→ e iαλ , D → D (42)

R-symmetry does not commute with supersymmetry



Few more on R-symmetries...

Other R-charges:

R[d2θ] = −2 , R[d2θ†] = +2 , R[Dα] = −1 , R[D†α̇] = 1

Therefore:

R[Wα] = +1 , R[W ] = +2

Consider the superpotential

W = LΦ +
1

2!
MΦ2 +

y

3!
Φ3

If we impose R-symmetry then only one of these terms survive!

R-symmetries play an important role in spontaneous symmetry
breaking of global SUSY and in the non-renormalization theorem



Summary

1. We built renormalizable and non-renormalizable SUSY
Lagrangians on superspace using chiral and vector superfields,
eqs.(37,38).

2. We learned a new kind of symmetry called R-symmetry

Let’s construct an interesting model tomorrow morning...
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