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Motivation

Supersymmetry (SUSY) is a continuous symmetry that relates
fermions and bosons. It has the virtue of allowing non-trivial
interactions among particles.

In some sense, it answers the question: why does Nature play with
particles of different spin?

SUSY is motivated best by the solution it provides to the hierarchy
problem. The latter is the instability of the Higgs mass under
quadratically divergent radiative corrections.

Minimal Supersymmetric Standard Model (MSSM) includes:

I Unification of gauge couplings

I Dark Matter

I Stability of the vacuum

I Radiative Electroweak Symmetry Breaking
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Hierarchy problem
through a Renormalizable Toy Model

Complex Scalar field: φ

Weyl fermion: ψ

L = ∂µφ∗∂µφ + iψ†σ̄µ∂µψ

− 1

2
MF ψψ −

1

2
MF ψ

†ψ† − λF φψψ − λ∗F φ
∗ψ†ψ†

−M2
B φ
∗φ − λB (φ∗φ)2 (1)

Symmetries: A chiral global U(1) when MF = 0

φ→ e−2iαφ , ψ → e iαψ
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1-loop Fermion mass corrections

They must contain at least one MF insertion e.g.,

δMF '
λ2F

16π2
MF (2)

Light Fermion masses are natural: they are stable under radiative
corrections.

MF is protected by the U(1)-symmetry.
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1-loop Boson mass corrections

The boson mass is not protected by the chiral symmetry

δM2
B '

λB
16π2

Λ2 −
λ∗FλF
16π2

Λ2 (3)

where Λ is the UV cut-off.

Light Boson masses are not natural: they are not stable under
radiative corrections.

MB receives large, quadratically divergent, radiative corrections,
and so does the Higgs boson in the SM
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I The cut-off Λ is presumably at MGUT or MPLANCK .

I Cancellations in 1 part to 1015−17 between counterterms is
needed: Hierarchy (or fine tuning) problem

I Solution: there must be a relation between λF and λB but
also a symmetry that guarantees this relation holds to all
orders: this symmetry is called Supersymmetry.

I SUSY stabilises the ElectroWeak (EW) scale i.e., MW � MP ,
by cancelling all quadratic divergences

We shall show how this works in the simplest SUSY model: the
Wess-Zumino model
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SUSY algebra

{Qα, Q†α̇} = 2 σµαα̇ Pµ (4)

{Qα, Qβ} = {Q†α̇, Q†
β̇
} = 0 (5)

[Pµ, Qα] = [Pµ, Q†α̇] = 0 (6)

[Pµ, Pν ] = 0 . (7)

Qα : the SUSY generator

Theorem (Coleman-Mandula (1967))

If a QFT in d > 2 has a second conserved vector quantity other
than the total energy-momentum, Pµ = (H,P i ), then S = 1, i.e.,
no scattering is allowed.



A consequence .....

In fact the most general possibility allowed by CM-theorem is

{Q I
α, QJ †

α̇ } = 2 δIJ σµαα̇ Pµ (8)

where I , J = 1...N. We shall only consider the simplest, N = 1,
case, in these lectures.

Theorem (Noether (1918))

Symmetry of the Lagrangian ↔ conserved quantity

∂µJµ
α = 0 , Qα =

∫
d3x J0

α . (9)
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Wess-Zumino Model (1974)

Weyl fermion, ψ
Complex Scalar field, φ
Complex (auxiliary) field, F

LWZ = ∂µφ∗∂µφ + iψ†σ̄µ∂µψ + F ∗ F

+

{
M (φ F − 1

2
ψ ψ) + λ (φ2 F − φψ ψ) + c.c.

}
(10)

LWZ is invariant under the supersymmetric transformations:

δεφ = ε ψ , (11)

δεψα = −i (σµ ε†)α ∂µφ + εα F , (12)

δεF = − i ε† σ̄µ ∂µψ (13)

fermion ↔ boson
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Wess-Zumino Model
While φ and ψ are propagating fields, the F -field is not. It can be
integrated out from LWZ by using e.o.m for F and F ∗, i.e.,

∂LWZ

∂F
= 0 ⇒ F ∗ = − ( M φ+ λ φ2 ) (14)

The Lagrangian (10) now becomes on-shell:

L ′WZ = ∂µφ∗∂µφ + iψ†σ̄µ∂µψ

− 1

2
M ψψ − 1

2
M∗ ψ†ψ† − λ φ ψψ − λ∗ φ∗ ψ†ψ†

− V(φ, φ∗) . (15)

where the scalar potential

V(φ, φ∗) = |Mφ+ λφ2|2 ≡ |F |2 (16)

= |M|2φ∗φ + |λ|2(φ∗φ)2 + λM∗ φ∗φφ + λ∗M φφ∗φ∗

is always positive definite.



Wess-Zumino Model (consequences)

Hierarchy problem solved

L ′WZ is the supersymmetric generalisation of the toy model of
eq. (1) with λF = λ and λB = λ∗λ. The hierarchy problem is
technically solved: quadratic divergences cancel order by order and
to all orders in perturbation theory!

Equality of Masses

L ′WZ contains a complex scalar field with mass M and a Weyl field
with mass M. This is a general feature of SUSY because P2 = M2

is the Casimir operator of SUSY algebra (see eq. (6)).

SUSY must be broken
The absence of SUSY partners (s-leptons, s-quarks, gauginos) of
the observed particles (leptons, quarks, gauge bosons) means that
SUSY must be broken in everyday life!
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Non-renormalization Theorem
The Yukawa coupling, λ, is not renormalized to all orders in
perturbation theory. Let’s consider the following 1-loop, 3-point
1PI, diagram (possibly log-divergent by naive power counting)

This diagram does not exist: there is no < φ∗φ∗ > propagator (red
blob) in WZ-model. (This diagram is also prop to λ · λ · λ ·M ·M
and violates an R-symmetry, see Lec. II)

Of course the coupling λ does have a β-function because of wave
function renormalization contributions.
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Non-renormalization Theorem and tadpole cancellation

Exersice 1: Non-Renormalization at two-loops

Consider two-loop Feynman diagram contributions to the vertex
φψψ in the WZ-model (on-shell). Take for simplicity zero mass,
M = 0. Following the argument of the previous slide, prove that
non of these diagrams exist, and the non-renormalization theorem
stays at this level too.

Example: No tadpole contributions

Prove, for simplicity at one-loop, that scalar tadpole diagrams
cancel each other in WZ-model. In fact this cancellation persists
to all orders in perturbation theory.
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Exercise 2: More general WZ-model

It is possible to add more complicated interactions inside the curly
bracket of eq. (10) by the simple use of a general, analytic,
function W (φ) of scalar fields, called superpotential. Prove that
the general WZ-Lagrangian with i = 1, ...n copies of (φ, ψ,F ) fields

LWZ = ∂µφ∗i∂µφi + iψ†i σ̄µ∂µψi + F ∗i Fi

+

{
−1

2
W ijψiψj + W iFi + c.c.

}
(17)

with

W ij =
∂2W (φ)

∂φi∂φj
, W i =

∂W (φ)

∂φi
(18)

is invariant under the SUSY transformations (11-13). The simple
WZ-model of eq.(10) is recovered for W (φ) = 1

2Mφ2 + λ
3φ

3.
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Exercise 3: Soft SUSY breaking terms

Add to LWZ a scalar mass terms or trilinear couplings of the form

LSUSY breaking = (m2)jiφ
∗iφj (19)

+ (aijkφiφjφk + c .c) (20)

+ (bijφiφj + c .c) (21)

Prove that, in general, these terms individually are not invariant
under the SUSY transformations (11-13). These terms are called
soft SUSY breaking terms because they do not destroy the
cancellation of quadratic divergences.



Summary

I SUSY relates fermions and bosons non-trivially

I SUSY algebra is a mathematically consistent extension of the
Poincare algebra

I In WZ-model quadratic divergences cancel

I The Yukawa coupling is not renormalized

I SUSY must be broken at low energies

I Remarks
I More general interactions in WZ-model through the

superpotential
I SUSY breaking terms



For Further Reading I
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