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Standard Model

Gauge Theory based on the gauge group

The subscript L denote the fact that only left-handed quark and leptons transform 
in a non-trivial way under the weak gauge group

This imply that Dirac mass terms for fermions are forbidden by the gauge 
symmetry

Also forbidden are explicit masses for the gauge bosons.  The inclusion of such 
terms would lead to non-renormalizability and the breakdown of perturbation 
theory at energies of the order of 1 TeV (unitarity violation) 

 The so-called Higgs mechanism, proposed by several authors, including Brout, 
Englert and Higgs,  leads to a solution of these problems and to the appearance of a 
new, neutral scalar degree of freedom : the Higgs Boson particle.  A particle with 
the expected Higgs properties, with mass 125 GeV, was recently discovered at the 
LHC.

SU(3)C ⇥ SU(2)L ⇥ U(1)Y

LM = �mD  ̄L R + h.c.
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Standard Model Particles. Quantum Numbers

There are three generations of quarks and leptons.  The only difference between 
generations are their masses, provided by the Higgs field, as we shall discuss.

Quarks transform in the fundamental representation of SU(3). 

Left-handed quarks      transform in the fundamental representation of SU(2) and 
carry hypercharge 1/6.

Right-handed quarks                    are singlet under SU(2) and carry hypercharge 2/3 
and -1/3, respectively

Left-handed leptons         transform in the fundamental representation of SU(2) and 
carry hypercharge -1/2

Right-handed leptons                     are singlets under SU(2) and carry hypercharge 
-1 and 0, respectively

There are SU(3) gauge bosons, named gluons, and a massive charge gauge boson,        
and a massive neutral gauge boson,      .

There is a scalar field, carrying hypercharge  1/2 transforming in the fundamental 
representation of SU(2).  Only one of the 4 degrees of freedom is physical, the 
neutral  Higgs Boson. 

QL

uR and dR

LL

lR and ⌫R

W±
µ

Zµ
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Standard Model Particles and quantum numbers

At low energies only electromagnetic gauge  symmetry is manifest.  
Fermions, with the possible exception of neutrinos, form Dirac

particles, with equal charges for left and right chiralities.

How do the fermions and gauge bosons acquire mass ?
In the SM is via the “Higgs” mechanism.  What is it and

how can we test it ? Is it unique ?
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Spontaneous Symmetry Breaking of Continuous Symmetries

Occurs when the vacuum state is not invariant under a symmetry of the Hamiltonian

Let’s take as an example a set of  scalar fields transforming in some represantation of a 
group G, where the dimension of the representation d(G) = n, 

We consider that the scalar fields acquire vacuum expectation value (ground state)

Since the potential is invariant under the transformations, one obtains for all fields

At the minimum, the second term vanishes and the first term is proportional to the 
mass matrix. 

[S,H] = 0; S |⌦ i6=|⌦i

�i(x) ! �i(x) + i ✏

a
T

a
ij�j(x)

< �i >= vi

�V =
@V

@�i
��i = 0;

@2V

@�i@�k
T a
ij�i +

@V

@�i
T a
ik = 0
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Goldstone Theorem

Hence, if the theory is invariant under a continuous symmetry the condition                        

must be fulfilled

Now,  if the vacuum state is invariant under the action of the group, no information 
may be obtained from here. However, if the state is not invariant the above define 
massless (Nambu Goldstone) modes.

More specifically, assume that 

and

There will be n’-n  massless Nambu Goldstone Bosons associated with the broken 
generators of the group G.

M2
ki T

a
ijvj = 0

T c
ijvj 6= 0 for c = n0

+ 1, ...n

T b
ijvj = 0 for b = 1, 2, ...n0
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Higgs Potential

Representation of a Scalar potential invaiant under U(1) rotations

Ground state is not invariant under U(1) transformations

No potential curvature in the direction of the field transformation:
Massless Mode associated with fluctuations in this direction
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Gauge Theories

Theorem no longer valid if there is a gauge Symmetry.  

The reason is that in this case, the gauge symmetry defines the equivalency of all vacuua 
related by gauge transformations. One can always fix the gauge, eliminating the massless 
Goldstone modes from the theory.

But something else happens :  The gauge bosons associated with the broken generators 
acquire a mass proportional to the gauge couplings and the vacuum expectation values 

Formally, lets take again a scalar field transforming under some general representation of 
the group G, of dimension n,  and again lets take a field that has a nontrivial v.e.v. 

Now, take for simplicity real v.e.v.’s,  the above expression may be rewritten as

The mass matrix elements are non-trivial when the ground state fields are non-invariant

There is precisely one massive gauge boson per “broken” generator ! The Goldstone modes 
are replaced by the new, longitudinal degrees of freedom of the massive gauge fields.

(Dµ�)
† Dµ� ! g2�†Aa

µT
aT bAb

µ�

1

2
Aa

µA
µ,bM2

ab

M2
ab = g2

�
T a
ijvi

� �
T b
jkvk

�
�i =

vip
2
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Non-Simple Groups : The Standard Model
The Standard Model is an example of a theory invariant under a non-simple group, 
namely SU(3) x SU(2) x U(1).   The SU(3) generators are not broken and therefore 
the gluons remain massless.  The expressions above can be simply generalized 
associating to each generator the corresponding gauge coupling.  Using symmetry 
properties, now the mass Matrix may be rewritten as

Let’s take the case of a field in the fundamental representation of SU(2), with 
hypercharge 1/2  and

                                            and for SU(2)

Using the fact that 

We get the following mass matrix 

M2
ab = gagbvi

{T a, T b}ik
2

vk

h�iT =
1p
2
(0, v) T a =

�a

2

Dµ� =
�
@µ � igAa

µT
a � ig0Y Bµ

�
�

{�a,�b} = �ab, {�a, I} = 2�a, {I, I} = 2

M2
ab =

g2v2

4

2

664

1 0 0 0
0 1 0 0
0 0 1 �g0/g
0 0 �g0/g 1

3

775
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Mass Eigenstates and Couplings

The mass terms in the Lagrangian can then be written as

Defining the states

the Lagrangian can now be rewritten as  

A massless mode, the photon, remains in the spectrum,  

One can now replace the original fields in terms of the mass eigenstates and obtain the 
following couplings :  

                                        that mediate transitions between states of different isospin

From here one can identify the charge operator and the electromagnetic coupling with

LM =
1

2

v2

4

h
g2

�
A1

µ

�2
+

�
A2

µ

�2
+
�
gA3

µ � g0Bµ

�2i

W±
µ =

1p
2

�
A1

µ ⌥ iA2
µ

�
, Zµ =

gA3
µ � g0Bµp
g2 + g02

LM =
g2v2

4
W+

µ Wµ,� +
1

2

�
g2 + (g0)2

�
v2

4
ZµZ

µ

Aµ =
g0A3

µ + gBµp
g2 + (g0)2

Dµ = @µ � i
gp
2

�
W+

µ T+ +W�
µ T��� i

(g2T3 � (g0)2Y )p
g2 + (g0)2

Zµ � i
gg0p

g2 + (g0)2
Aµ (T3 + Y )

e =
gg0p

g2 + (g0)2
and Q = T3 + Y

T± = T1 ± iT2
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Comments

The W bosons carry electromagnetic charge and mediate transitions between 
states of different charge, what makes these massive gauge bosons very different 
from the photon.  

The ratio of the tree-level Z and W boson masses is governed by the weak gauge 
couplings

Using this definition one can now rewrite the couplings in the following way

Observe that all fields with non-trivial charge or isospin are coupled to the Z 
boson.  The W bosons only couple to left-handed SM fermions, and the photon 
obviously only to the electromagnetically charged fields. 

MW

MZ
= cos ✓W , with cos ✓W =

gp
g2 + (g0)2

Dµ = @µ � i
gp
2

�
W+

µ T+ +W�
µ T��� i

p
g2 + (g0)2Zµ

�
T3 �Q sin2 ✓W

�
� ieQAµ

11Thursday, July 17, 14



Fermion Masses
Since all left-handed quark and leptons transform in the fundamental representation of 
SU(2) and all right-handed ones transform as singlets, the scalar field that led to the 
generation of gauge boson masses can also lead to the generation of fermion ones.

Using for instance the generic coupling between the down-quarks and the Higgs 
(observe that is also invariant under hypercharge), where i and j are generation indeces

Once the scalar acquires vacuum expectation value one obtains a mass matrix for the 
down-quark fields (it is similar for charged leptons)

For the up-quarks the hypercharge quantum numbers do not allow such a coupling. 
However, one can use the complex conjugate Higgs field and write the gauge invariant 
term (it would be similar for neutrinos, but right-handed neutrinos admit Majorana 
masses)

Heavier fermions then correspond to fields more strongly coupled to the Higgs.

Mij
d = hij

d

vp
2

�hij
d Q̄

i
L� djR + h.c.

�hij
u Q̄

i
L(�i�2�

⇤) uj
R + h.c. ! Mij

u = hij
u

vp
2
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Comments

Fermion mass matrices are arbitrary complex matrices.  They are therefore diagonalized 
by bi-unitary transformations,

They may be obtained by diagonalizing the hermitian matrices obtained by multiplying 
the mass matrix by its hermitian conjugate (and vice versa) 

Mass eigenstates are then defined by transforming the original weak eigenstates by

Neutral gauge interactions are established between fields of the same chirality and 
charge quantum numbers and remain diagonal after this unitarity rotation.  No FCNC

Charge gauge interactions, instead

Non-trivial intergeneration structure. Close to diagonal in quark sector. Large mixings    
in lepton sector.

UL Mu U †
R ! Diagonal Mu, DL Md D†

R ! Diagonal Md

UL,R uL,R ! up quark mass eigenstates

DL,R dL,R ! down quark mass eigenstates

ūL,R�µuL,R ! ūL,R�µUL,RU
†
L,RuL,R ⌘ ūL,R�µuL,R

ūL�µdL ! ūL�µULD
†
LdL ⌘ ūLVCKM�µdL
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Where is the Higgs ?

So far, we have discussed the mechanism of mass generation, but we have not 
identified the Higgs degree of freedom. 

Of the four degrees of freedom of the fundamental scalar doublet we introduced, 
three are the Goldstone modes associated with the directions of the non-trivial 
transformations of the v.e.v.  The additional one, is a massive mode, the Higgs 
boson. Due to the real components of the T3 and hypercharge generators, 

This implies that the couplings of the Higgs h will be associated with the ones 
leading to mass generation.

This means that couplings of the physical Higgs will be proportional to fermion 
masses, and that trilinear couplings with gauge bosons will be proportional to the 
square of gauge boson masses. 

� =

 
G+

h +vp
2

+ iG
0

p
2

!
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Higgs Couplings

h

W�
⌫

W+

µ

= i
g2v

2
gµ⌫ = 2i

M2

W

v
gµ⌫

h

h

W�
⌫

W+

µ

= i
g2

4
· 2gµ⌫ = 2i

M2

W

v2
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h

Z⌫

Zµ

= i
(g2 + g02)v

4
· 2gµ⌫ = 2i

M2

Z

v
gµ⌫

1

h

W�
⌫

W+

µ

= i
g2v

2
gµ⌫ = 2i

M2

W

v
gµ⌫

h

h

W�
⌫

W+

µ

= i
g2

4
· 2gµ⌫ = 2i

M2

W

v2

gµ⌫

h

Z⌫

Zµ

= i
(g2 + g02)v

4
· 2gµ⌫ = 2i

M2

Z

v
gµ⌫

1

Figure 2: Feynman rules for the hWW and hhWW vertices, as derived from the Lagrangian in Eq. (38).
The extra factor of 2 in the first expression for the hhWW coupling is a symmetry factor accounting for
the two identical Higgs bosons. See also Eq. (40).

The second term in Eq. (33) becomes

L � 1

8
g2(v + h)2(W 1

µ � iW 2

µ)(W 1µ + iW 2µ)

=
1

4
g2(v + h)2W+

µ W�µ

=
g2v2

4
W+

µ W�µ +
g2v

2
hW+

µ W�µ +
g2

4
hhW+

µ W�µ. (38)

The first term here is a mass term for the W boson, with

M2

W =
g2v2

4
. (39)

The Higgs vacuum expectation value (vev) has given the W boson a mass! Because MW and g have
been directly measured, we can determine v ' 246 GeV.12 The second and third terms in Eq. (38) give
interactions of one or two Higgs bosons with W+W�. The corresponding Feynman rules (see Fig. 2) are

hW+

µ W�
⌫ : i

g2v

2
gµ⌫ = igMW gµ⌫ = 2i

M2

W

v
gµ⌫ ,

hhW+

µ W�
⌫ : i

g2

4
⇥ 2! gµ⌫ = 2i

M2

W

v2

gµ⌫ , (40)

where the 2! in the second expression is a combinatorical factor from the two identical Higgs bosons in the
Lagrangian term. Note that the W mass, the hWW coupling, and the hhWW coupling all come from the
same term in the Lagrangian and are generated by expanding out the factor (v +h)2. Thus the hWW and
hhWW couplings are uniquely predicted in the SM once the W mass and v are known.

We now consider the third term of Eq. (33). We first write the linear combination of W 3

µ and Bµ that
appears in this term as a properly normalized real field:

�
gW 3

µ � g0Bµ

�
=

p
g2 + g02

 
gp

g2 + g02
W 3

µ � g0
p

g2 + g02
Bµ

!

⌘
p

g2 + g02
�
cW W 3

µ � sW Bµ

�

⌘
p

g2 + g02 Zµ, (41)

12This value of v actually comes from the Fermi constant, GF = 1/
p
2v2.
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8
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M2

Z
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e

e

h = �i
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2

= �i
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Figure 3: Feynman rules for the hZZ and hhZZ vertices, as derived from the Lagrangian in Eq. (43). The
extra factor of 2 in the first expression for the hZZ coupling is a symmetry factor accounting for the two
identical Z bosons. The hhZZ coupling contains two extra factors of 2 which are the symmetry factors
accounting respectively for the two identical Higgs bosons and two identical Z bosons. See also Eq. (45).

We first examine the photon coupling. Using the definitions sW = g0/
p

g2 + g02, cW = g/
p

g2 + g02,
we can simplify the coe�cient

�
gsW T 3 + g0cW Y

�
=

gg0
p

g2 + g02

�
T 3 + Y

� ⌘ eQ, (48)

where e is the electromagnetic coupling and Q is the electric charge operator. By convention, we identify

e =
gg0

p
g2 + g02

= gsW = g0cW , Q = T 3 + Y. (49)

The photon coupling then takes the familiar form Dµ � �ieAµQ.
Now let’s examine the Z boson coupling. We can use Y = Q � T 3 to write

�
gcW T 3 � g0sW Y

�
=

g2 + g02
p

g2 + g02
T 3 � g02

p
g2 + g02

Q =
p

g2 + g02
�
T 3 � s2

W Q
�
. (50)

Putting it all together, we obtain the covariant derivative in the gauge boson mass basis,

Dµ = @µ � igsG
a
µta � i

g

2

�
W+

µ T+ + W�
µ T�� � i

e

sW cW
Zµ

�
T 3 � s2

W Q
� � ieAµQ, (51)

where we note that g = e/sW and e/sW cW = g/cW =
p

g2 + g02. From this expression we can derive
the familiar electroweak fermion-antifermion-gauge boson Feynman rules using the fermion gauge-kinetic
terms,

L �  ̄LiDµ�
µ L +  ̄RiDµ�

µ R. (52)
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Figure 4: Feynman rule for the hēe vertex, as derived from the Lagrangian in Eq. (56). See also Eq. (58).

The Higgs-electron coupling is really very small:

yep
2

=
me

v
=

511 keV

246 GeV
' 2.1 ⇥ 10�6. (59)

We can write down a similar Higgs coupling and mass term for the muon and for the tau lepton. The tau
Yukawa coupling is more “respectable,” though still kind of small:

y⌧p
2

=
m⌧

v
=

1.78 GeV

246 GeV
' 7.2 ⇥ 10�3. (60)

The SM does not provide any explanation for these numbers or their sizes; they are just parameters to
be measured. One can hope that a more complete theory of flavor would provide an explanation for the
pattern of fermion masses.

Note that we have not generated any masses or Higgs couplings to neutrinos, because we did not
introduce three right-handed neutrinos ⌫R to participate in the Higgs couplings. More on this after we
deal with the quark masses.

2.5.2 Quark masses and mixing

We start by following our noses and writing a term just like for the charged leptons:

L
Yukawa

� �
h
ydd̄R�†QL + y⇤

dQ̄L�dR

i
, (61)

where again the second term is just the Hermitian conjugate of the first, and we will again assume that
the dimensionless constant yd is real for now. As for the leptons, we multiply out the SU(2)L doublets in
unitarity gauge,

�†QL =

✓
0,

v + hp
2

◆✓
uL

dL

◆
=

v + hp
2

dL, (62)

so that

L
Yukawa

� �
✓

ydvp
2

◆
d̄d � ydp

2
hd̄d. (63)

The first term is a mass for the down quark, md = ydv/
p

2, and the second is an hd̄d coupling.
So far so good, but what about the up-type quark masses? To generate these, we take advantage of

a useful property of SU(2): the anti-doublet or “conjugate” doublet transforms in the same way as the
doublet.17 The conjugate Higgs doublet is given by

�̃ ⌘ i�2�⇤ = i

✓
0 �i
i 0

◆✓
��

�0⇤

◆
=

✓
�0⇤

���

◆
, (64)

17Contrast this to the case of SU(3), in which the anti-triplet does not transform in the same way as the triplet.

13

f

f

= �i
hfp
2
= �i

mf

v

These couplings govern the Higgs production rates and Branching Ratios, and                      
we have increasing evidence of their approximate realization in nature for a                            
Higgs mass of approximately 125 GeV.  Relevant deviations are still possible, though.
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Higgs Self Couplings

In order to define the Higgs self couplings, we should give a mathematical 
representation of the potential. If one restrict oneself to renormalizable couplings,

Keeping terms that depend on the physical Higgs field, 

Hence, we get   

V = �m2�†�+ �
�
�†�

�2

v2 = m2/�, �†� =
(h+ v)2

2

V = � v2h2 + � v h3 +
�

4
h4

m2
h = 2� v2

h

h

Z⌫

Zµ

= i
(g2 + g02)

8
· 2 · 2gµ⌫ = 2i

M2

Z

v2

gµ⌫

e

e

h = �i
yep
2

= �i
me

v

h

h

h

= �i�v · 3! = �6i�v = �3i
m2

h

v

2h

h

h

h

= �i
�

4
· 4! = �6i� = �3i

m2

h
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3

Figure 5: Feynman rules for the hhh and hhhh vertices, as derived from the Lagrangian in Eq. (90). The
hhh coupling contains a symmetry factor of 3! = 6 from the three identical Higgs bosons, and the hhhh
coupling contains a symmetry factor of 4! = 24 from the four identical Higgs bosons. See also Eqs. (91)
and (92).

3 SM Higgs collider phenomenology

All the masses of the SM particles21 (W±, Z, the charged fermions, and the Higgs as of summer 2012)
are now known. Therefore all the couplings of the Higgs boson relevant for Higgs collider phenomenology
are uniquely predicted! This means that any deviation from these predictions in Higgs phenomenology
would provide evidence of physics beyond the SM. (Before the Higgs discovery, mh was the only unknown
parameter, and so the predictions were presented as a function of mh.)

3.1 Higgs decays

Because we know the values of all the parameters that appear in the Higgs coupling Feynman rules,
we can predict the partial widths for all the decays (and hence the decay branching ratios). The SM
predictions for these decay branching ratios are very important in the analysis of LHC Higgs data because
they allow us to test the hypothesis that the discovered Higgs boson is the SM Higgs. For that reason,
a lot of work has been done to collect the most up-to-date calculations of the Higgs decay partial widths
(including radiative corrections) and to make good estimates of their remaining theoretical uncertainties
(from uncalculated higher-order radiative corrections) and parametric uncertainties (from uncertainties in
the input parameters, like the quark masses). At the time of writing, the most recent calculations and
uncertainty estimates are summarized in Ref. [6].

3.1.1 h ! ff̄

The Higgs boson can decay to a fermion-antifermion pair (see Fig. 6). Because the Higgs-fermion interaction
strength is proportional to the fermion mass, the decays to the heaviest kinematically-accessible fermion
final states will have the largest partial widths. Given the measured Higgs mass of about 125 GeV, decays

21I’m ignoring neutrinos again, because they are irrelevant for Higgs phenomenology in the SM.
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Figure 5: Feynman rules for the hhh and hhhh vertices, as derived from the Lagrangian in Eq. (90). The
hhh coupling contains a symmetry factor of 3! = 6 from the three identical Higgs bosons, and the hhhh
coupling contains a symmetry factor of 4! = 24 from the four identical Higgs bosons. See also Eqs. (91)
and (92).

3 SM Higgs collider phenomenology

All the masses of the SM particles21 (W±, Z, the charged fermions, and the Higgs as of summer 2012)
are now known. Therefore all the couplings of the Higgs boson relevant for Higgs collider phenomenology
are uniquely predicted! This means that any deviation from these predictions in Higgs phenomenology
would provide evidence of physics beyond the SM. (Before the Higgs discovery, mh was the only unknown
parameter, and so the predictions were presented as a function of mh.)

3.1 Higgs decays

Because we know the values of all the parameters that appear in the Higgs coupling Feynman rules,
we can predict the partial widths for all the decays (and hence the decay branching ratios). The SM
predictions for these decay branching ratios are very important in the analysis of LHC Higgs data because
they allow us to test the hypothesis that the discovered Higgs boson is the SM Higgs. For that reason,
a lot of work has been done to collect the most up-to-date calculations of the Higgs decay partial widths
(including radiative corrections) and to make good estimates of their remaining theoretical uncertainties
(from uncalculated higher-order radiative corrections) and parametric uncertainties (from uncertainties in
the input parameters, like the quark masses). At the time of writing, the most recent calculations and
uncertainty estimates are summarized in Ref. [6].

3.1.1 h ! ff̄

The Higgs boson can decay to a fermion-antifermion pair (see Fig. 6). Because the Higgs-fermion interaction
strength is proportional to the fermion mass, the decays to the heaviest kinematically-accessible fermion
final states will have the largest partial widths. Given the measured Higgs mass of about 125 GeV, decays

21I’m ignoring neutrinos again, because they are irrelevant for Higgs phenomenology in the SM.

18

16Thursday, July 17, 14



Quartic Coupling Renormalization Group Evolution

In the SM, the Higgs mass is governed by the value of the quartic coupling at the weak 
scale.  This coupling evolves with energy, affected mostly by top quark loops, weak gauge 
couplings and self interactions.

If the Higgs mass was larger than the weak scale, the quartic coupling would be large and 
the theory could develop a Landau Pole. However, the observed Higgs mass leads to a 
value of                   and therefore the main effects are associated with the top loops.

The top quark loops tend to push the quartic coupling to negative values, inducing a 
possible instability of the electroweak symmetry breaking vacuum.

A careful analysis reveals, solving the coupled RG equations of the quartic and Yukawa 
couplings up to three loop order show that  that the turning point woul be at scales of 
order                  and therefore the electroweak symmetry breaking minimum is not stable. 

However, careful analyses reveal that possible transitions to these new deep minima are 
suppressed and the lifetime of the electroweak symmetry breaking vacuum is much larger 
than the age of the Universe.  No new physics is implied !

On the other hand, this shows that a theory that would predict small values of the quartic 
coupling at these large energies would lead to the right Higgs mass..

t = log(Q2
)

16⇡2 d�

dt
= 12(�2 + h2

t �� h4
t ) +O(g4, g2�)

� ' 0.125

1010 GeV
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Figure 2: Upper: RG evolution of � (left) and of �� (right) varying Mt, ↵3(MZ), Mh by
±3�. Lower: Same as above, with more “physical” normalisations. The Higgs quartic coupling
is compared with the top Yukawa and weak gauge coupling through the ratios sign(�)

p
4|�|/yt

and sign(�)
p

8|�|/g2, which correspond to the ratios of running masses mh/mt and mh/mW ,
respectively (left). The Higgs quartic �-function is shown in units of its top contribution, ��(top
contribution) = �3y4t /8⇡

2 (right). The grey shadings cover values of the RG scale above the
Planck mass MPl ⇡ 1.2⇥ 1019 GeV, and above the reduced Planck mass M̄Pl = MPl/

p
8⇡.
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Figure 3: Left: SM phase diagram in terms of Higgs and top pole masses. The plane is
divided into regions of absolute stability, meta-stability, instability of the SM vacuum, and non-
perturbativity of the Higgs quartic coupling. The top Yukawa coupling becomes non-perturbative
for Mt > 230 GeV. The dotted contour-lines show the instability scale ⇤I in GeV assuming
↵3(MZ) = 0.1184. Right: Zoom in the region of the preferred experimental range of Mh and Mt

(the grey areas denote the allowed region at 1, 2, and 3�). The three boundary lines correspond
to 1-� variations of ↵3(MZ) = 0.1184±0.0007, and the grading of the colours indicates the size
of the theoretical error.

The quantity �e↵ can be extracted from the e↵ective potential at two loops [111] and is explicitly
given in appendix C.

4.3 The SM phase diagram in terms of Higgs and top masses

The two most important parameters that determine the various EW phases of the SM are the
Higgs and top-quark masses. In fig. 3 we update the phase diagram given in ref. [4] with our
improved calculation of the evolution of the Higgs quartic coupling. The regions of stability,
metastability, and instability of the EW vacuum are shown both for a broad range of Mh and
Mt, and after zooming into the region corresponding to the measured values. The uncertainty
from ↵3 and from theoretical errors are indicated by the dashed lines and the colour shading
along the borders. Also shown are contour lines of the instability scale ⇤I .

As previously noticed in ref. [4], the measured values of Mh and Mt appear to be rather
special, in the sense that they place the SM vacuum in a near-critical condition, at the border
between stability and metastability. In the neighbourhood of the measured values of Mh and
Mt, the stability condition is well approximated by

Mh > 129.1GeV + 2.0(Mt � 173.10GeV)� 0.5GeV
↵3(MZ)� 0.1184

0.0007
± 0.3GeV . (64)

The quoted uncertainty comes only from higher order perturbative corrections. Other non-

19

D. Buttazzo et al., arXiv:1307.3536

Stability Bounds and the running quartic coupling
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Constraints on the Higgs Mass Before Discovery

The existence of the Higgs bosons at the weak scale tames the rise of the amplitude of 
the scattering cross section of the longitudinal massive gauge bosons.  In order to 
preserve perturbation theory, a Higgs, with mass below  the TeV scale was required (or 
something with similar properties).

Precision electroweak observables, like the ratio of the W and Z masses,  the Z partial 
and total width, and the lepton and quark forward-backward asymmetries, depend via 
radiative corrections logarithmically on the Higgs mass.

Here it is very important the precise value of the mass and the couplings of the Higgs to 
the gauge bosons, which is governed by the gauge couplings in the SM.

Departures of the Higgs couplings from their SM values demand the appearance of new 
states that tame the logarithmic divergences appearing in the computation of precision 
observables. 

Assuming a Higgs like particle, one can obtain information on the Higgs mass from a 
combination of the precision electroweak observables measured at LEP, SLC and the 
Tevatron colliders. 
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Figure 2: Comparison of the indirect measurements of MW and mt (LEP
I+SLD data) (solid contour) and the direct measurement (pp̄ colliders and
LEP II data) (dashed contour). In both cases the 68% CL contours are
plotted. Also shown is the SM relationship for these masses as a function
of the Higgs-boson mass, mH . The arrow labeled ∆α shows the variation of
this relation if α(M2

Z) is varied by one standard deviation. From Ref. [16].

and Tevatron measurements select a SM Higgs-boson mass region roughly
below 200 GeV. Therefore, assuming no physics beyond the Standard Model
at the weak scale, all available electroweak precision data are consistent with
a light Higgs boson.

The actual value of MH emerging from the electroweak precision fits
strongly depends on theoretical predictions of physical observables that in-
clude different orders of strong and electroweak corrections. As an example,
in Fig. 2 the magenta arrow shows how the yellow band would move for one
standard deviation variation in the QED fine-structure constant α(m2

Z). It
also depends on the fit input parameters. As we see in Fig. 3, MH grows
for larger mt and smaller MW . The limits deduced from Fig. 2 and 4 is
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Precision Measurements preferred a light Higgs

For a comprehensive discussion, see the LEP Electroweak
Working Group page,  http://lepewwg.web.cern.ch
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Comment on Gauge Fixing
As we said before, the unphysical Goldstone modes may be removed by a choice of gauge.  
This gauge is called the unitary gauge, in which all gauge and Higgs modes are physical.

The gauge propagator in this gauge, however,  has a hard ultraviolet behavior what leads to 
complications in the computation of the ultraviolet behavior of quantum processes

It is better to work on what are call general renormalizable gauges, in which the 
Goldstones are kept in the spectrum and are included as degrees of freedom participating 
in quantum corrections. 

Due to the fact that the neutral and charged currents involve linear terms in the Higgs field 
times derivatives of the Goldstone modes,  keeping the Goldstone modes lead to terms in 
the Lagrangian of the form  

This terms may be removed by an appropriate gauge fixing term, which in the abelian case 
reads

This removes the mixing terms, modifies the gauge boson propagator and provides a mass 
term for the Goldstone modes,  

L ⇠ g v V µ@µG ⌘ MV V
µ@µG

Lg.f. = � 1

2⇠
(@µV

µ + ⇠MG)2

�i(gµ⌫ � kµk⌫/M2
V )

k2 �M2
V

M2
G = ⇠M2

V
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Renormalizable Gauges

Similar gauge fixing conditions can be used in the non-abelian case to remove the  
mixing terms between Goldstone modes and gauge bosons,

The appearance of a dependence on the Higgs field of the gauge fixing condition 
leads also to a mass terms for the Ghost fields appearing from the determinant of 
the variation of the gauge fixing condition in the Path integral quantization

Both Goldstone and Ghost modes must be included in quantum computations in 
order to project into the physical states of the theory. 

Lg.f. = � 1

2⇠

⇥
@µA

µ,a + ig⇠
�
< �† > T a�0 � (�0)†T a < � >

�⇤2

Lg.f. = � 1

2⇠

⇥
@µB

µ + ig0⇠
�
< �† > �0 � (�0)† < � >

�⇤2

�0 = �� < � >

Z
D↵ �[Fg.f.(A

µ,↵,�↵)] det


�Fg.f.

�↵

�
= 1
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Propagators 

• Gauge Bosons

• Goldstone Modes   

• Ghosts

• Observe that when xi tends to infinity, one recovers the Unitary gauge. 

• Physical results must be gauge independent.  For many computations the 
gauge                   is a very convenient one. 

�i

k2 �M2
V + i✏


gµ⌫ + (⇠ � 1)

kµk⌫
k2 � ⇠M2

V

�

i

k2 � ⇠M2
V + i✏

�i

k2 � ⇠M2
V + i✏

⇠ = 1
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Goldstone Mode interactions with fermions.

The neutral Goldstone mode is just the imaginary part of the neutral Higgs 
component and therefore its interactions are similar to the Higgs ones.

For the charged Goldstones, the relevant Lagrangian term may be rewritten by 
inserting several identity factors 

One can see the apearence of the mss eigenstates and the diagonal mass matrix. 
What is left is the same CKM matrix that appeared in the charged currents. In the 
mass basis, one gets. 

d̄L(�1 + v + i�2)
Mdiag

d

v
dR

G+

p
2

v
ūLU

†
LUL D†

LDL Md D†
RDR dR + h.c.

G+

p
2

v
ūLVCKM Mdiag

d dR + h.c.
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SM Higgs decay rates

Due to the proportionality of fermion Higgs couplings to their mass, and the fact 
that the measured Higgs mass is below twice the top and gauge boson masses, one 
would expect the Higgs decays to be dominated by the decay into the heavier 
fermions, excluding the top.  These are bottom-quarks and tau-leptons

This reasoning is affected by the fact that the fermion masses are so small that the 
fermion decay widths start competing with three body decays mediated by gauge 
bosons and even loop effects induced by the top-quarks.  Fermion decay widths

The three body decay width induced by the vector bosons is

�(h ! ff̄) = mh
Nc

8⇡

m2
f

v2

 
1�

4 m2
f

m2
h

!3/2

�(h ! V V

⇤) =
3 M

4
V

32⇡3
v

2
MH �V R(x)

�W = 1, �Z = 7/12� 10/9 sin2 ✓W + 40/9 sin4 ✓W

2.2.2 Three body decays

Below the WW/ZZ kinematical thresholds, the Higgs boson decay modes into gauge bosons,

with one of them being off–shell, Fig. 2.9b, are also important. For instance, from MH >∼ 130

GeV, the Higgs boson decay into WW pairs with one off–shell W boson, starts to dominate

over the H → bb̄ mode. This is due to the fact that in these three–body decays, although

suppressed by an additional power of the electroweak coupling squared compared to the

dominant H → bb̄ case and by the virtuality of the intermediate vector boson state, there

is a compensation since the Higgs couplings to W bosons are much larger than the Higgs

Yukawa coupling to b quarks.

The partial width for the decay H → V V ∗ → V ff̄ , the charges of the vector bosons V

summed over and assuming massless fermions, is given by [168]

Γ(H → V V ∗) =
3G2

µM
4
V

16π3
MHδ

′
V RT (x) (2.30)

with δ′W = 1, δ′Z = 7
12 −

10
9 sin2 θW + 40

9 sin4 θW and

RT (x) =
3(1 − 8x + 20x2)

(4x − 1)1/2
arccos

(
3x − 1

2x3/2

)
−

1 − x

2x
(2 − 13x + 47x2)

−
3

2
(1 − 6x + 4x2) log x (2.31)

The invariant mass (M∗) spectrum of the off–shell vector boson peaks close to the kine-

matical maximum corresponding to zero–momentum of the on–shell and off–shell final state

bosons

dΓ(H → V V ∗)

dM2
∗

=
3G2

µM
4
V

16π3MH
δ′V

βV (M4
Hβ

2
V + 12M2

V M2
∗ )

(M2
∗ − M2

V )2 + M2
V Γ2

V

(2.32)

with β2
V = [1− (MV + M∗)2/M2

H ][1− (MV −M∗)2/M2
H ]. Since both V and V ∗ preferentially

have small momenta, the transverse and longitudinal polarization states are populated with

almost equal probabilities. Neglecting the widths of the vector bosons, ΓV , one finds after

summing over all M∗ values

ΓL

ΓL + ΓT
=

RL(M2
V /M2

H)

RT (M2
V /M2

H)
(2.33)

where RT is given in eq. (2.31) and RL reads [159]

RL(x) =
3 − 16x + 20x2

(4x − 1)1/2
arccos

(
3x − 1

2x3/2

)
−

1 − x

2x
(2 − 13x + 15x2)

−
1

2
(3 − 10x + 4x2) log x (2.34)

[Note that for heavy Higgs bosons, the three–body modes H → W+W−Z and H → tt̄Z

have been considered [155,169]; they lead to marginal branching ratios.]

83

2.2 Decays into electroweak gauge bosons

2.2.1 Two body decays

Above the WW and ZZ kinematical thresholds, the Higgs boson will decay mainly into pairs

of massive gauge bosons; Fig. 2.9a. The decay widths are directly proportional to the HV V

couplings given in eq. (2.2) which, as discussed in the beginning of this chapter, correspond

to the JPC = 0++ assignment of the SM Higgs boson spin and parity quantum numbers.

These are S–wave couplings, ∼ ϵ⃗1 · ϵ⃗2 in the laboratory frame, and linear in sin θ, with θ

being the angle between the Higgs and one of the vector bosons.

a)

•H V

V

•

b)

H
V

f

f̄
•

c)

H

f3

f̄4

f1

f̄2

Figure 2.9: Diagrams for the Higgs boson decays into real and/or virtual gauge bosons.

The partial width for a Higgs boson decaying into two real gauge bosons, H → V V with

V = W or Z, are given by [32, 145]

Γ(H → V V ) =
GµM3

H

16
√

2π
δV

√
1 − 4x (1 − 4x + 12x2) , x =

M2
V

M2
H

(2.27)

with δW = 2 and δZ = 1. For large enough Higgs boson masses, when the phase space factors

can be ignored, the decay width into WW bosons is two times larger than the decay width

into ZZ bosons and the branching ratios for the decays would be, respectively, 2/3 and 1/3

if no other decay channel is kinematically open.

For large Higgs masses, the vector bosons are longitudinally polarized [159]

ΓL

ΓL + ΓT
=

1 − 4x + 4x2

1 − 4x + 12x2

MH≫MV−→ 1 (2.28)

while the L, T polarization states are democratically populated near the threshold, at x =

1/4. Since the longitudinal wave functions are linear in the energy, the width grows as the

third power of the Higgs mass, Γ(H → V V ) ∝ M3
H . As discussed in §1.4.1, a heavy Higgs

boson would be obese since its total decay width becomes comparable to its mass

Γ(H → WW + ZZ) ∼ 0.5 TeV [MH/1 TeV]3 (2.29)

and behaves hardly as a resonance.

82
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QCD Corrections to Higgs Decays

The partial decay width depend on the quark masses.  The question is what masses 
should be used.

It turns out that using the running masses at the Higgs mass scale reduces in great part 
the size of the QCD corrections, which however remain relevant, but not sizable

Similar expressions for other quarks. 

Observe that there is a significant variation of the running masses from low energies to 
the Higgs mass.  The bottom mass at the “pole” bottom mass is about 4.15 GeV, while at 
the Higgs mass scale is about 2.9 GeV !   When squared, this gives a variation of order 2 
between these values, that must be compensated by QCD corrections. 

�(h ! bb̄) ' 3Mh

8 v2 ⇡
mb(mh)

2�QCD

�QCD = 1 + 5.7
↵s(mh)

⇡
+ 30

✓
↵s(mh)

⇡

◆2

+ ....
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Comments

Although not realistic phenomenologically, it is interesting to consider the decay of a heavy 
Higgs to gauge bosons. 

In such a case, it is easy to prove that the rate is given by

The first factor comes from the coupling, while the second factor comes from the 
contribution of the longitudinal components of the W bosons. 

The growth with the cube of the Higgs mass may be also understood from the fact that one 
is producing the Goldstone modes, which are the longitudinal components of the gauge 
bosons.

The rate is then proportional to 

The factor in the numerator comes from the coupling of the Higgs to the Goldstone and 
the factor in the denominator comes from phase space integration (dimensional analysis). 
And now, knowing the relation of the quartic coupling with the Higgs mass square, one 
obtains the behavior shown above. 

�(h ! W+W�) ' 1

16⇡

M4
W

v2
m3

h

M2
W

�(h ! G+G�) / (�v)2

mh
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Higgs Loop-induced Decays
The most important loop-induced decays are into gluons and photons.

The decay into gluons in the Standard Model is mostly mdediated by loops of top 
quarks.  These also contribute to the decay into photons, but the most important 
contribution comes from  loop of  W-bosons

Both particles cannot produced on-shell from Higgs decays, and their contributions 
may be approximated by 

where the factors                                           are related to the contributions of W 
bosons and top quarks to the electromagnetic coupling beta function.  

Similarly,  for the decay into gluons, one obtains after considering the color structure

h

h

h

5

h

h

h

5

h

h

h

5

Figure 8: Schematic Feynman diagrams for h ! gg and h ! ��.

• It grows with increasing Higgs mass like m3

h: this can be traced back to the E/MW factors in the
longitudinal W boson polarization vectors.24

• Another way to derive the mh dependence is via the Goldstone Boson Equivalence Theorem, which
provides a good approximation for the partial width in the limit mh � 2MW . In this case the W
bosons can be replaced by the charged Goldstone bosons �±. The h�+�� vertex is proportional to
i�v, so |M| ⇠ �2v2 and � ⇠ 1

mh
�2v2 ⇠ m3

h/v2, where we have used the fact that m2

h ⇠ �v2.

• The complicated dependence on the kinematic factor xW is due to the sum over the W polarization
vectors. Note that the kinematic factor

p
1 � xW

�
1 � xW + 3

4

x2

W

� ! 1 when mh � 2MW .

Of course, the expression in Eq. (96) is only valid for Higgs masses above the WW threshold, which,
since the Higgs discovery, we now know is not the case in nature. Instead, one has to calculate o↵-shell
h ! WW ⇤ ! Wff̄ or the full doubly-o↵shell h ! ff̄f f̄ . This is a tedious calculation, but it has
been done. The current state-of-the-art theoretical predictions for SM Higgs decay to four fermions is
implemented in a code called PROPHECY4F [9], which includes NLO QCD and NLO electroweak corrections
to the full 4f final states with all interferences included. (For example, the processes h ! W ⇤W ⇤ ! `⌫`⌫
and h ! Z⇤Z⇤ ! ``⌫⌫ interfere with each other for same-flavor final state leptons. This interference is
important when mh < 2MW because the phase space overlap of the two processes becomes significant
when the gauge bosons are forced o↵ shell.)

The remaining theoretical uncertainty from missing higher-order radiative corrections is estimated to
be only ⇠ 0.5%.

3.1.3 Loop-induced decays: h ! gg, ��, Z�

The loop-induced Higgs decays are rare but important (remember that h ! �� was one of the two Higgs
boson discovery channels, along with h ! ZZ⇤ ! 4`). Feynman diagrams are shown in Fig. 8.

• h ! gg: This decay is dominated by the top quark loop. The bottom quark loop also contributes at
the few-percent level.

• h ! ��: This decay is dominated by the W boson loop. The top quark loop contribution interferes
destructively with the W loop contribution, reducing the partial width by roughly 30%. The bottom
quark and tau lepton loops also contribute a small amount.

• h ! Z�: This decay is dominated by the W boson loop. The top quark loop contribution is very
small.

24In the W rest frame the three polarization four-vectors ✏µ are just (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1). Boosting along
the z axis such that the W acquires a four-momentum pµ = (E, 0, 0, p), the first two polarization vectors stay the same while
the third (the longitudinal one) becomes (p, 0, 0, E)/MW .
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�(h ! ��) =
↵2m3

h

256⇡3v2

�����
X

i

N i
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�����

2

F1 ' �7, F1/2 ' 4/3

�(h ! gg) ' ↵2
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h
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Low Energy Theorems

The one-loop corrections to the QED Lagrangian induced by heavy particles is given by

The coefficients bi are the beta function contribution of the corresponding particle

From here it is easy to find the effective Higgs coupling by performing derivatives with 
respect to the Higgs field 

In the presence of several fermion and boson sectors of similar charge, one obtains

This gives an excellent parametrization to consider the contribution of new particles 
beyond the SM ones.  A similar expression exists for the gluon case, by changing the beta 
functions by the corresponding QCD ones.  

�1

4

Fµ⌫F
µ⌫

X

i

bie2

16⇡2
log

⇤

2

m2
i (h)

+ ...

b1/2 =

4

3

NcQ
2

for a Dirac fermion
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1

3

NcQ
2
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↵

16⇡
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Numerical values of the Higgs Decay Branching Ratios

Higher order QCD 
corrections included

Decay mode BR Notes (as of early 2014)
bb̄ 58% Observed at about 2� at CMS

WW ⇤ 22% Observed at 4�
gg 8.6%
⌧⌧ 6.3% Observed at 1–2 �
cc̄ 2.9%

ZZ⇤ 2.6% Discovery mode (in ZZ⇤ ! 4µ, 2µ2e, 4e)
�� 0.23% Discovery mode
Z� 0.15%
µµ 0.022%

�
tot

4.1 MeV

Table 2: Predicted decay branching ratios (BRs) for a 125 GeV SM Higgs boson, in order of size, from
Ref. [11]. The last row is the predicted Higgs total width. Keep in mind that the relative uncertainties on
the individual BR predictions are of order 3–10%.

missing higher order corrections. The current parametric uncertainty in ↵s leads to an uncertainty
in the h ! gg partial width of about 4%.27

• h ! ��: The QCD and electroweak corrections are each known to NLO, leaving a residual theoretical
uncertainty of about 1%.

• h ! Z�: This process has been calculated at leading order only. The QCD corrections are expected
to be small, since they a↵ect only the fermion loop contributions which already give only a small
contribution to the amplitude. The uncertainty due to the missing NLO electroweak corrections is
estimated at about 5%.

3.1.4 SM Higgs branching ratios

To give some phenomenological insight, the SM Higgs branching ratios are summarized in order of size in
Table 2. All of the LHC measurements to date are roughly consistent with the SM predictions, within the
current (large) uncertainties.

3.2 Higgs production

Because we know the values of all the parameters that appear in the Higgs coupling Feynman rules, we can
also predict the cross sections for Higgs boson production in collisions of SM particles. These cross sections
are the second key ingredient (along with the Higgs branching ratios just discussed) in the analysis of Higgs
data that allows us to test the hypothesis that the discovered Higgs boson is the SM Higgs. As for the
branching ratios, the current most up-to-date calculations and uncertainty estimates for Higgs production
at the LHC are summarized in Ref. [6]. I’ll also comment on Higgs production in e+e� collisions, relevant
for Higgs studies at the proposed International Linear Collider (ILC).

3.2.1 Higgs production in hadron collisions

The dominant Higgs production mode at the LHC is gluon fusion (abbreviated GF or ggF), gg ! h
(Fig. 10). This process makes up about 85% of the total (inclusive) Higgs production cross section at the
LHC. At leading order, the amplitude for gg ! h is the same as that for the decay h ! gg, with the

27This comes from using ↵s(MZ) = 0.119± 0.002 (90% CL) as advocated by the LHC Higgs Cross Section Working Group
in 2012 [11].
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Branching Ratios
for a mass of 125 GeV

At the observed Higgs mass, several decay Branching ratios of the SM Higgs 
are larger than a few percent. Decay into photons and into ZZ allow the 

Higgs mass reconstrution and were discovery modes. 
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Higgs Production Cross Section at the LHC

The dominant Higgs Production Mode at the LHC is given by gluon fusion

At one loop it can be computed from the effective Lagrangian defined above, but 
the NLO and NNLO corrections are sizable 

Effective Lagrangian ignore top quark mass dependence, and provides a very good 
approximation.  Corrections up to NNLO are today known and show a good 
degree of convergence, and a small scale dependence. 
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Figure 10: Sample Feynman diagrams for Higgs boson production in gluon fusion, at leading order (left)
and next-to-leading order (right).
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Figure 11: Feynman diagram for weak boson fusion Higgs production at the LHC.

initial and final states swapped. (This amplitude must then be squared and integrated with the gluon
parton densities.) Beyond leading order, however, the QCD corrections for gluon-fusion Higgs production
are di↵erent from those for the h ! gg decay, because the additional radiated jets are in the final state,
dramatically changing the kinematic structure. These QCD corrections are quite large, enhancing the
gluon-fusion Higgs production cross section by about a factor of two. The current (2013), quite conservative,
uncertainties on the gluon fusion Higgs production cross section at the 7–8 TeV LHC are about ±8% from
QCD scale uncertainty and ±7% from the uncertainty in the parton distribution functions. The Higgs
discovery comes predominantly from this production mode.

The second-largest Higgs production cross section at the LHC is weak boson fusion (WBF), qq ! hjj,
also known as vector boson fusion (VBF) (Fig. 11). The cross section is about one tenth the size of
that for gluon fusion. The process is distinctive experimentally because the two incoming quarks tend to
be scattered by only a small angle, leading to two very energetic jets pointing close to the beam line in
opposite halves of the detector (referred to as “forward jets” or “forward tagging jets”). The process is
interesting theoretically because it gives experimental access to the Higgs boson couplings to WW and ZZ
in a production process. VBF Higgs production has been seen at about the 2� level in the h ! �� final
state.

Another distinctive Higgs production process is associated production together with a W or Z boson
(Fig. 12). The cross section for these two processes combined is about 60–70% as large as that for VBF.
As for VBF, this process gives access to the Higgs boson coupling to WW or ZZ. Experimentally, the W
or Z boson in the final state provides a useful handle to reduce background in searches for Higgs decays
to bb̄.

A challenging but important process is tt̄h associated production, in which the Higgs boson is radiated
o↵ a top-antitop quark pair (Fig. 13). The production rate is very low at the 7–8 TeV LHC and still low
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Figure 26: The gg → H production process at lowest order.
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Figure 27: The top-quark loop contribution to gg → H gives origin to a ggH
effective vertex in the mt → ∞ limit.

gluon fusion.

6.1 gg → H at NNLO: a prototype example

The gluon-fusion process offers a true learning ground to understand the
complexity of hadronic cross sections. We can learn about the need of im-
proving the theoretical predictions beyond the LO and even the NLO, the
importance of resumming sets of large corrections at all orders, the subtleties
of interfacing the NNLO calculation with a PS Monte Carlo.

Most of the basic ideas that motivate the techniques used in the NNLO
calculation of the cross section for the gg → H production process have been
already introduced in Section 3.1.4, where we discussed the H → gg loop-
induced decay. In particular we know that in the SM, the main contribution
to gg → H comes form the top-quark loop (see Fig. 26) since:

σLO =
GFαs(µ)2

288
√
2π

∣
∣
∣
∣
∣

∑

q

AH
q (τq)

∣
∣
∣
∣
∣

2

, (114)

where τq = 4m2
q/M

2
H and AH

q (τq) ≤ 1 with AH
q (τq) → 1 for τq → ∞.

As we saw in Section 3.1.4, one can work in the infinite top-quark mass
limit and reduce the one-loop Hgg vertex to a tree level effective vertex,
derived from an effective Lagrangian of the form:

Leff =
H

4v
C(αs)G

aµνGa
µν , (115)
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Figure 28: The NLO cross section for gg → H as a function of MH . The two
curves represent the results of the exact calculation (solid) and of the infinite
top-quark mass limit calculation (dashed), where the NLO cross section has
been obtained as the product of the K-factor (K=σNLO/σLO) calculated in
the mt→∞ limit times the LO cross section. From Ref. [14].

where the coefficient C(αs), including NLO and NNLO QCD corrections, can
be written as:

C(αs) =
1

3

αs

π

[

1 + c1
αs

π
+ c2

(
αs

π

)2

+ · · ·
]

. (116)

NLO and NNLO QCD corrections to gg → H can then be calculated as
corrections to the effective Hgg vertex, and the complexity of the calculation
is reduced by one order of loops.

The NLO order of QCD corrections has actually been calculated both
with and without taking the infinite top-quark mass limit. The comparison
between the exact and approximate calculation shows an impressive agree-
ment at the level of the total cross section, and, in particular, at the level
of the K-factor, i.e. the ratio between NLO and LO total cross sections
(K=σNLO/σLO), as illustrated in Fig. 28. It is indeed expected that meth-
ods like the infinite top quark mass limit may not reproduce the correct
kinematic distributions of a given process at higher order in QCD, but are
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Higgs Production Cross Section
in the Gluon Fusion Channel
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Figure 30: K-factor for gg → H at the LHC (
√
s=14 TeV), calculated adding

progressively more terms in the expansion of Eq. (118). From Harlander and
Kilgore as given in Table 1.
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Figure 31: Cross section for gg → H at the LHC (
√
s=14 TeV), calculated

at LO, NLO and NNLO of QCD corrections, as a function of MH , for µF =
µR=MH/4. From Harlander and Kilgore in Table 1.
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Figure 32: Residual renormalization/factorization scale dependence of the
LO, NLO, and NNLO cross section for gg → H , at the Tevatron (

√
s=2 TeV)

and at the LHC (
√
s=14 TeV), as a function of MH . The bands are obtained

by varying µR=µF by a factor of 2 about the central value µF =µR=MH/4.
From Ref. [48].

behavior of the expansion in Eq. (118). Just adding the first few terms
provides a remarkably stable K-factor. The results shown in Fig. 30 have
been indeed confirmed by a full calculation [47], where no soft approximation
has been used.

The results of the NNLO calculation [48, 47] are illustrated in Figs. 31 and
32. In Fig. 31 we can observe the convergence of the perturbative calculation
of σ(gg → H), since the difference between NLO and NNLO is much smaller
than the original difference between LO and NLO. This is further confirmed
in Fig. 32, where we see that the uncertainty band of the NNLO cross section
overlaps with the corresponding NLO band. Therefore the NNLO term in
the perturbative expansion only modify the NLO cross section within its
NLO theoretical uncertainty. This is precisely what one would expect from a
good convergence behavior. Moreover, the narrower NNLO bands in Fig. 32
shows that the NNLO result is pretty stable with respect to the variation of
both renormalization and factorization scales. This has actually been checked
thoroughly in the original papers, by varying both µR and µF independently
over a range broader than the one used in Fig. 32. The NNLO calculation has
been more recently implemented into the HNNLO code [50] and subsequently
extended by including theH → γγ, H → WW/ZZ → 4l, with the possibility
to apply arbitrary cuts on the momenta of the partons and of the photons or
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Bands show the renormalization/factorization
scale dependence varying up and down by a 
factor 2  with respect to a reference scale 

equal to a fourth of the Higgs Mass

Convergence of the computed Higgs Cross 
Section at different orders in QCD
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Apart from gluon fusion, three important production modes are weak boson fusion, 
associated production with gauge bosons and associated production with heavy quarks.

All these processes, together with the decay branching ratios are important to determine 
the Higgs couplings 

The self couplings may be probed by double Higgs production, which is mediated by Higgs 
and also by loops of top-quarks.  Very challenging measurement at the LHC

g

g

h

g

q

h

j

W, Z

W, Z

q

q

j

h

j

q

q̄

h

W, Z

7

g

g

h

g

q

h

j

W, Z

W, Z

q

q

j

h

j

q

q̄

h

W, Z

7

Figure 10: Sample Feynman diagrams for Higgs boson production in gluon fusion, at leading order (left)
and next-to-leading order (right).
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Figure 11: Feynman diagram for weak boson fusion Higgs production at the LHC.

initial and final states swapped. (This amplitude must then be squared and integrated with the gluon
parton densities.) Beyond leading order, however, the QCD corrections for gluon-fusion Higgs production
are di↵erent from those for the h ! gg decay, because the additional radiated jets are in the final state,
dramatically changing the kinematic structure. These QCD corrections are quite large, enhancing the
gluon-fusion Higgs production cross section by about a factor of two. The current (2013), quite conservative,
uncertainties on the gluon fusion Higgs production cross section at the 7–8 TeV LHC are about ±8% from
QCD scale uncertainty and ±7% from the uncertainty in the parton distribution functions. The Higgs
discovery comes predominantly from this production mode.

The second-largest Higgs production cross section at the LHC is weak boson fusion (WBF), qq ! hjj,
also known as vector boson fusion (VBF) (Fig. 11). The cross section is about one tenth the size of
that for gluon fusion. The process is distinctive experimentally because the two incoming quarks tend to
be scattered by only a small angle, leading to two very energetic jets pointing close to the beam line in
opposite halves of the detector (referred to as “forward jets” or “forward tagging jets”). The process is
interesting theoretically because it gives experimental access to the Higgs boson couplings to WW and ZZ
in a production process. VBF Higgs production has been seen at about the 2� level in the h ! �� final
state.

Another distinctive Higgs production process is associated production together with a W or Z boson
(Fig. 12). The cross section for these two processes combined is about 60–70% as large as that for VBF.
As for VBF, this process gives access to the Higgs boson coupling to WW or ZZ. Experimentally, the W
or Z boson in the final state provides a useful handle to reduce background in searches for Higgs decays
to bb̄.

A challenging but important process is tt̄h associated production, in which the Higgs boson is radiated
o↵ a top-antitop quark pair (Fig. 13). The production rate is very low at the 7–8 TeV LHC and still low
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Figure 13: Sample Feynman diagram for tt̄h associated production at the LHC. There are also contributions
in which the Higgs boson is attached to the outgoing top quark or antiquark line, as well as contributions
from qq̄ or gg annihilation through an s-channel gluon.

at the 14 TeV LHC (a mere 1% of the inclusive Higgs cross section at this higher energy), but this process
is an essential probe of the Higgs boson coupling to top quarks. Knowledge of the tt̄h coupling from a
direct (tree-level) process like tt̄h is essential in order to probe for contributions to the loop-induced ggh
coupling from non-SM particles in the loop.

Let me mention here a complementary (but even more experimentally challenging) process: single-top
plus Higgs associated production. This process gets contributions from two Feynman diagrams (Fig. 14),
one in which the Higgs couples to the top quark and one in which it couples to the W boson exchanged
in the t-channel. In the SM, there happens to be a strong destructive interference between these two
diagrams, resulting in a cross section that is probably too small to be measured at the LHC. However, it
was pointed out recently [12] that this process provides an interesting test of the relative sign of the WWh
and tt̄h couplings, because a sign flip in one of the couplings relative to the SM would turn the destructive
interference into constructive interference and make this cross section large enough to measure.

One last process worth studying at the LHC is double Higgs production (Fig. 15). The value of this
process is that it allows an experimental probe of the Higgs self-coupling through the hhh vertex. The
cross section is low and the process is experimentally very tough: current simulation studies indicate that
one would need a high-luminosity run of the LHC (3000 fb�1 at each of two detectors at 14 TeV) to get
even a ±30% measurement of the triple-Higgs coupling � [13].

3.2.2 Higgs coupling extraction at the LHC

Extracting the individual Higgs couplings from LHC data is a challenge because what’s measured is the
rates in individual production and decay channels. In the zero-width approximation, a particular rate can
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Figure 13: Sample Feynman diagram for tt̄h associated production at the LHC. There are also contributions
in which the Higgs boson is attached to the outgoing top quark or antiquark line, as well as contributions
from qq̄ or gg annihilation through an s-channel gluon.

at the 14 TeV LHC (a mere 1% of the inclusive Higgs cross section at this higher energy), but this process
is an essential probe of the Higgs boson coupling to top quarks. Knowledge of the tt̄h coupling from a
direct (tree-level) process like tt̄h is essential in order to probe for contributions to the loop-induced ggh
coupling from non-SM particles in the loop.

Let me mention here a complementary (but even more experimentally challenging) process: single-top
plus Higgs associated production. This process gets contributions from two Feynman diagrams (Fig. 14),
one in which the Higgs couples to the top quark and one in which it couples to the W boson exchanged
in the t-channel. In the SM, there happens to be a strong destructive interference between these two
diagrams, resulting in a cross section that is probably too small to be measured at the LHC. However, it
was pointed out recently [12] that this process provides an interesting test of the relative sign of the WWh
and tt̄h couplings, because a sign flip in one of the couplings relative to the SM would turn the destructive
interference into constructive interference and make this cross section large enough to measure.

One last process worth studying at the LHC is double Higgs production (Fig. 15). The value of this
process is that it allows an experimental probe of the Higgs self-coupling through the hhh vertex. The
cross section is low and the process is experimentally very tough: current simulation studies indicate that
one would need a high-luminosity run of the LHC (3000 fb�1 at each of two detectors at 14 TeV) to get
even a ±30% measurement of the triple-Higgs coupling � [13].

3.2.2 Higgs coupling extraction at the LHC

Extracting the individual Higgs couplings from LHC data is a challenge because what’s measured is the
rates in individual production and decay channels. In the zero-width approximation, a particular rate can
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Standard Model Higgs Production Cross Section

Significant hierarchy between dominant production cross section and subdomenat 
ones.

Subdominant production cross section contain co-linear jets or leptons in the final 
state and can therefore be interesting production modes that may be measured at 
the LHC. 

Discovery modes were mostly in the production of Higgs in gluon fusion, with 
subsequent decays into ZZ and diphotons. 
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Higg Discovery at the LHC

The Discovery of the scalar resonance at the LHC, with properties similar to the 
ones of a SM-Higgs has been of great importance.

It has put on solid grounds the mechanism of mass generation based on the 
spontaneous breakdown of gauge symmetries. 

Nature seems to have chosen the simplest way of generating masses, as described 
in the Standard Model.  No hint of physics beyond the Standard Model exists

All fundamental particles we know acquire masses via the vacuum expectation 
value of the Higgs field, including in certain way the Higgs itself.  But what sets that 
scale ?  Why aren’t there other scalars with gauge invariant masses at that scale ?

It is to early to say.  We need to explore physics at higher energies, and the next 
run of the LHC will help.

In the meantime, the Higgs properties are being studied in many different 
channels, and these studies will continue in the next run of the LHC.
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Higgs Production Channels at ATLAS
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Higgs Production Channels at CMS
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