New results on Sommerfeld enhancement and $\Omega_{\chi}h^2$ of χ^0 dark matter in the general MSSM

Charlotte Hellmann

TU Munich

SUSY 2014, Manchester 24.07.2014

M.Beneke, CH, Pedro Ruiz Femenia: arXiv:1210.7928, 1303.0200, and work in preparation

Introduction

Sommerfeld enhancements . . .

• Intrinsic in non-relativistic pair-annihilation or production

e.g. threshold production of heavy particles at colliders

• Coulomb enhancement: $\sigma_{l=0}v_{\text{rel}} = S(v) \sigma_{l=0}^{\text{tree}}$, $S(v) = \frac{\pi \alpha}{v} \frac{1}{1 - e^{-\pi \alpha/v}}$ [Sommerfeld '31]

... in DM pair-annihilations

lengo '09; Cassel '09; Slatyer '10

- 1. Indirect detection: Explanation of cosmic ray anomalies? Constraints on DM candidates: Cohen et al '13; Fan&Reece '13; Hryczuk et al '14
- 2. Relic density calculation $\left(\Omega_{\text{DM}}h^2 = 0.1187 \pm 0.0017 \ (68\% CL) \ [\text{PLANCK '13]}\right)$
- DM candidates:

 χ^0_1 LSP in the MSSM: Hisano et al '04,'06; lengo et al '10,'11; \ldots

Minimal DM: Cirelli et al '07,'08,'09

DM in hidden sector: Arkani-Hamed et al '09; Feng et al '10; Hannestad et al '11; .

Effective field theory approach: the NRMSSM

Consider nearly mass-degenerate states $(\chi\chi)_{I}, {}_{I=1,...N}$

Effective field theory approach: the NRMSSM

Consider nearly mass-degenerate states $(\chi\chi)_I$, $_{I=1,...N}$

Effective field theory approach: the NRMSSM

Consider nearly mass-degenerate states $(\chi\chi)_{I, I=1,...N}$

Describe process within non-relativistic effective theory:

$$\sigma_{(\chi\chi)_I \to \text{light }} v_{\text{rel}} = \left(\frac{1}{4} \sum_{s_I}\right) 2\Im \langle (\chi\chi)_I | \delta \mathcal{L}_{\text{ann}}(x) | (\chi\chi)_I \rangle$$
Analogous to Bodwin, Braaten, Lepage '95

• Short distance part: accounted for by local four-fermion operators ${\cal O}$

$$\delta \mathcal{L}_{ann}(x) = \sum_{I,J} \widehat{f}(^{2s+1}L_{\mathcal{J}})_{IJ} \mathcal{O}_{(\chi\chi)_I \to (\chi\chi)_J}(^{2s+1}L_{\mathcal{J}};x)$$

• Long-range effects: encoded in $(\chi\chi)_I$'s scattering wave-function $ec{\psi}^{(I)}$

$$\left(-\frac{\vec{\partial}^2}{m_{\chi}} \,\,\delta_{JJ'} \,\,+\,\,V_{JJ'}(r)\right)\psi_{J'}^{(I)}(\vec{r}) \,\,=\,\,m_{\chi}v^2\,\,\psi_{J}^{(I)}(\vec{r})$$

Beyond leading order approximations in the MSSM

Sommerfeld enhancement of the $(\chi\chi)_I$, $_{I=1,...,N}$ pair's annihilation rate

$$S^{(I)} = \frac{\vec{\psi}_{(\vec{r}=0)}^{(I)*} \cdot \widetilde{\Gamma} \cdot \vec{\psi}_{(\vec{r}=0)}^{(I)}}{\vec{\psi}_{0(\vec{r}=0)}^{(I)*} \cdot \widetilde{\Gamma} \cdot \vec{\psi}_{0(\vec{r}=0)}^{(I)}}$$

- Includes off-diagonal scattering and annihilation
- Individual $S^{(I)}$ for each ${}^{2s+1}L_{\mathcal{J}}$ -wave

[For generic multi $(\chi\chi)_I$ state model: Slatyer '10]

Extension of previous work:

- 1. χ_1^0 in the generic MSSM (beyond pure wino- or higgsino scenarios)
- 2. Many nearly mass degenerate $(\chi\chi)_I$ states

(Including expansion in mass-differences)

[At 1-loop level: Drees, Gu '12]

- 3. Including P- and $\mathcal{O}(v^2)$ S-wave (beyond leading order S-wave)
- 4. Analytic expressions for all (off-diagonal) partial-wave V_{IJ} and Γ_{IJ}
- 5. Deal with closed channels for larger mass-splittings

Enhanced cross sections and relic density

Sommerfeld enhanced χ^0/χ^\pm co-annihilation cross sections

• Active $(\chi\chi)_I$ channels: $\delta M_I \leq 0.2 m_{\chi_1^0}$

$$\sigma_{(\chi\chi)_{I}} v_{\mathsf{rel}} = \sum_{{}^{1}S_{0}, {}^{3}S_{1}} \left[S_{I} \Gamma_{II} \right] + p_{i}^{2} \left(\sum_{{}^{1}P_{1}, {}^{3}P_{J}} \left[S_{I} \Gamma_{II} \right] + \sum_{{}^{1}S_{0}, {}^{3}S_{1}} \left[S_{I} \Gamma_{II}^{(p^{2})} \right] \right)$$

• $S_I = S_I(v)$ in non-trivial way!

Relic density from solving the Boltzmann equation

• Thermal weighting of all $\sigma_{(\chi\chi)_I} v_{\rm rel}$: $\langle \sigma_{\rm eff} v_{\rm rel} \rangle$

$$\frac{dY}{dx} = \frac{\left\langle \sigma_{\mathsf{eff}} v_{\mathsf{rel}} \right\rangle}{H \, x} \, \left(1 - \frac{x}{3 \, g_{*s}} \, \frac{d \, g_{*s}}{d \, x} \right) \, s \, \left(Y^2 - \left(Y^{eq} \right)^2 \right)$$

[Gondolo, Gelmini '91; Griest, Seckel '91]

Wino-like χ^0_1

- Active states: χ_1^0 , χ_1^{\pm} (approx. $SU(2)_L$ triplet)
- mass-splitting: $\delta m_{\rm rad} = m_{\chi_1^+} m_{\chi_1^0} \approx 0.160 \, {\rm GeV}$
- (co-)annihilation sectors:

neutral	$\chi_1^0 \chi_1^0, \ \chi_1^+ \chi_1^-$
single charged	$\chi_1^0 \chi_1^+ \left(\chi_1^0 \chi_1^-\right)$
double charged	$\chi_1^+ \chi_1^+ (\chi_1^- \chi_1^-)$

\rightarrow coupled system: $V_{2 \times 2}$, $\Gamma_{2 \times 2}$

pMSSM benchmark model:

2392587 Cahill-Rowley et al. '13

- $m_{\chi^0_1}$ = 1650 GeV
- $|Z_{N\,21}|^2 = 0.999$
- $\delta m_{\chi_1^+}$ = 0.155 GeV

Wino-like χ_1^0 : Sommerfeld enhancements and $\Omega_{\chi}h^2$

 10^{8}

 $x = m_v / T$

 $\langle \sigma_{\rm eff} v_{\rm rel} \rangle$:

• $x \simeq 20$: Freeze-out if $\langle \sigma_{\text{eff}} v_{\text{rel}} \rangle$ calculated pert. \rightarrow delayed when considering $\sigma^{SF} v_{rel}$

Yield
$$Y = \sum_i n_{\chi_i}/s$$
 and $\Omega_{\chi} h^2$:

•
$$\Omega_{\chi}^{\text{pert}}h^2 = 0.109$$

- $\Omega_{\gamma}^{SF}h^2 = 0.064 \rightarrow 40\%$ reduction
- $\sim 15\%$ error on $\Omega^{\mathsf{SF}}h^2$ if no off-diag. Γ

• Pure wino:
$$\Omega_{\chi}^{\text{pert}}h^2 = 0.055$$

 $\Omega_{\chi}^{\text{SF}}h^2 = 0.033$

Charlotte Hellmann (TU Munich)

Higgsino-to-wino trajectory

- 13 models, $\Omega^{\text{DarkSUSY}}h^2 = 0.1187$ [PLANCK+WMAP central value]
- Trajectory in μM_2 plane:
 - Model 1-6: higgsino-like χ^0_1
 - Model 7 9: mixed higgsino-wino χ^0_1
 - Model 10-13: wino-like χ^0_1

- Models 1 6: $- \Omega^{\text{SF}}/\Omega^{\text{pert}} \sim 0.75$ $- \sim 17\%$ error on $\Omega^{\text{SF}}h^2$ if no off-diag. Γ
- Models 7, 8, 9:
 - $\ \Omega^{\rm SF}/\Omega^{\rm pert} \sim (0.70, \ 0.65, \ 0.54)$
 - $-\sim 15\%$ error if no off-diag. Γ
- Models 10 13:
 - $-~\Omega^{\rm SF}/\Omega^{\rm pert}\sim 0.40-0.50$
 - $-\sim 25\%$ error if no off-diag. Γ

Bino χ_1^0 with enhancements in $\chi\chi$ co-annihilations

- Bino-like χ^0_1 is $SU(2)_L$ singlet state
 - \rightarrow no Sommerfeld enhancement in $\chi^0_1\chi^0_1$ annihilations
- BUT enhancements can potentially arise in co-annihilations

Bino-like χ_1^0 : enhanced co-annihilations and $\Omega_{\chi}h^2$

 $\langle \sigma_{\rm eff} v_{\rm rel} \rangle$:

- $x \simeq 50$: χ_2^0, χ_1^{\pm} decoupling
- Sommerfeld enhancement: 15 37% correction for $x \sim 20 100$

Yield
$$Y = \sum_i n_{\chi_i}/s$$
 and $\Omega_{\chi} h^2$:

•
$$\Omega_{\chi}^{\text{pert}}h^2 = 0.115$$

- $\Omega_{\chi}^{\rm SF} h^2 = 0.099 \rightarrow 14\%$ reduction
- 4% error on $\Omega^{\mathsf{SF}}h^2$ if no off-diag. Γ

Charlotte Hellmann (TU Munich)

Conclusions

- Sommerfeld enhancement is essential in χ^0_1 DM $\Omega_{\chi} h^2$ calculation
- Provide method for $\Omega_{\chi}h^2$ calculation including $\sigma^{\rm SF}v$:
 - Applicable in the general MSSM
 - Dealing with many nearly mass-degenerate $(\chi\chi)_I$ states
 - Including all $\underline{off-diagonal}$ potential and annihilation rates
- Largest effect for wino-like χ_1^0 : $\sim 40-60\%$ reduction of $\Omega_\chi h^2$
- Milder effect for higgsino-like χ^0_1 models: $\sim 20-25\%$ reduction
- First rigorous study of interpolating mixed wino-higgsino χ^0_1 models
- Effect on $\Omega_{\chi}h^2$ for bino-like χ^0_1 , if co-annihilations are enhanced
- In preparation: scan of the general MSSM parameter space to investigate the effect of Sommerfeld enhancements on $\Omega_{\chi}h^2$