Renormalization Group Improvement and Dynamical Breaking of Symmetry in a Supersymmetric Abelian Chern-Simons Model

A. G. Quinto¹ A. F. Ferrari¹ A. C. Lehum^{2,3}

¹CCNH - Universidade Federal do ABC, Santo André, SP, Brazil

²IF - Universidade de São Paulo, São Paulo, SP, Brazil

³ECT - Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil

SUSY2014: The 22nd International Conference on Supersymmetry and Unification of Fundamental Interactions, Manchester - UK

http://arxiv.org/abs/1405.6118v2

Motivation

Gap equations and Effective superpotential

- The unimproved Kählerian effective superpotential
- β and γ Functions
- Renormalization group equation
 - The improved Kählerian effective superpotential
 - Dinamical symmetry breaking
- Conclusions

Motivation

PHYSICAL REVIEW D 82, 085006 (2010)

Renormalization group and conformal symmetry breaking in the Chern-Simons theory coupled to matter

A. G. Dias* and A. F. Ferrari[†]

Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Rua Santa Adélia, 166, 09210-170, Santo André, SP, Brazil (Received 1 July 2010; published 5 October 2010)

The three-dimensional Abelian Chern-Simons theory coupled to a scalar and a fermionic field of arbitrary charge is considered in order to study conformal symmetry breakdown and the effective potential stability. We present an improved effective potential computation based on two-loop calculations and the renormalization group equation: The latter allows us to sum up series of terms in the effective potential where the power of the logarithms are one, two, and three units smaller than the total power of coupling constants (i.e., leading, next-to-leading, and next-to-next-to-leading logarithms). For the sake of this computation we determined the beta function of the fermion-fermion-scalar-scalar interaction and the anomalous dimension of the scalar field. We show that the improved effective potential provides a much more precise determination of the properties of the theory in the broken phase, compared to the standard effective potential obtained directly from the loop calculations. This happens because the region of the parameter space where dynamical symmetry breaking occurs is drastically reduced by the improvement discussed here.

DOI: 10.1103/PhysRevD.82.085006

PACS numbers: 11.15.Yc, 11.10.Hi, 11.30.Qc

$$\begin{split} \mathcal{L} &= \frac{1}{2} \epsilon_{\mu\nu\rho} A^{\mu} \partial^{\nu} A^{\rho} + i \bar{\psi} \gamma^{\mu} D_{\mu} \psi + (D^{\mu} \varphi)^{\dagger} (D_{\mu} \varphi) \\ &- \frac{\nu}{6} (\varphi^{\dagger} \varphi)^{3} - \alpha \varphi^{\dagger} \varphi \bar{\psi} \psi. \end{split}$$

The classical action in $\mathcal{N} = 1$ superspace of a Chern-Simons superfield coupled to N massless scalars superfields, with a quartic self-interaction,

$$\mathcal{S} = \int d^5 z \left\{ -\frac{1}{2} \Gamma^{\alpha} W_{\alpha} - \frac{1}{2} \overline{\nabla^{\alpha} \Phi_a} \nabla_{\alpha} \Phi_a + \frac{\lambda}{N} \left(\overline{\Phi_a} \Phi_a \right)^2 \right\}, \tag{1}$$

where $W^{\alpha} = \frac{1}{2} D^{\beta} D^{\alpha} \Gamma_{\beta}, \quad \nabla^{\alpha} = \left(D^{\alpha} - i \frac{g}{\sqrt{N}} \Gamma^{\alpha} \right) \text{ and } a = 1, \dots N.$

A.C. Lehum and A.J. da Silva. Phys.Lett., B693:393–398, 2010.S. J. Gates, Marcus T. Grisaru, M. Rocek, and W. Siegel. Front. Phys., 58:1–548, 1983.

$$\Phi_N = \frac{1}{\sqrt{2}} \left(\Sigma + \sqrt{N} \sigma_{cl} + i \Pi \right),$$

Component form of Eq. (1)

$$\begin{split} \mathcal{S} &= \int d^3x \left\{ \frac{1}{2} A_M \epsilon^{MNP} \partial_N A_P - \frac{1}{2} \partial^M \bar{\varphi}_a \partial_M \varphi_a + i \,\overline{\Psi}_a \gamma^M \left(\partial_M - i \, \frac{g}{\sqrt{N}} \, A_M \right) \Psi_a \right. \\ &\left. - \frac{g}{\sqrt{N}} \, \epsilon_{ab} \, A_M \bar{\varphi}_a \partial^M \varphi_b - \frac{1}{2N} \, g^2 A^2 \bar{\varphi}_a \varphi_a + \frac{1}{N} \left(\frac{1}{2} g^2 + \lambda \right) \overline{\Psi}_a \Psi_a \bar{\varphi}_b \varphi_b - \frac{1}{2} \left(\frac{\lambda}{N} \right)^2 \left(\bar{\varphi}_a \varphi_a \right)^3 \right\} \,, \end{split}$$

Alex G. Dias, M. Gomes, and A. J. da Silva. Phys. Rev., D69:065011, 2004.

A.G. Dias and A.F. Ferrari. Phys.Rev., D82:085006, 2010.

Using an appropriate gauge fixing and Faddeev-Popov terms,

$$\mathcal{S}_{GF+FP} = \int d^5 z \left[-\frac{1}{2\alpha} \left(\mathcal{F}_G \right)^2 + \bar{c} D^2 c + \frac{\alpha}{2} g^2 \sigma_{cl}^2 \bar{c} c + \frac{\alpha g^2}{2\sqrt{N}} \sigma_{cl} \bar{c} \Sigma c \right] , \qquad (2)$$

with $\mathcal{F}_G = \left(D^{\alpha} \Gamma_{\alpha} + \alpha \frac{g}{2\sqrt{N}} \sigma_{cl} \Pi \right),$

We may write the regularized action for this model as follows,

$$\begin{split} \mathcal{S}_{\mathcal{R}} &= \int d^{5}z \left\{ -\frac{1}{2} \Gamma^{\alpha} W_{\alpha} - M_{\Gamma} \Gamma^{2} - \frac{1}{4\alpha} D^{\alpha} \Gamma_{\alpha} D^{\beta} \Gamma_{\beta} + \overline{\Phi_{j}} \left[D^{2} + M_{\Phi_{j}} \right] \Phi_{j} + \frac{1}{2} \Sigma \left[D^{2} + M_{\Sigma} \right] \Sigma \\ &+ \frac{1}{2} \Pi \left[D^{2} + M_{\Pi} \right] \Pi + \bar{c} \left[D^{2} + \alpha M_{\Gamma} \right] c + \frac{ig}{2\sqrt{N}} \left(\left[D^{\alpha} \overline{\Phi_{j}} \right] \Gamma_{\alpha} \Phi_{j} + \overline{\Phi_{j}} \Gamma_{\alpha} D^{\alpha} \Phi_{j} \right) \\ &+ \frac{g}{2\sqrt{N}} \left(D^{\alpha} \Pi \Gamma_{\alpha} \Sigma + \Pi \Gamma_{\alpha} D^{\alpha} \Sigma \right) - \frac{g^{2}}{2N} \left[\overline{\Phi_{j}} \Phi_{j} + \Sigma^{2} + \Pi^{2} \right] \Gamma^{2} + \frac{\lambda}{N} \left(\overline{\Phi_{j}} \Phi_{j} \right)^{2} \\ &+ \frac{\lambda}{4N} \left(\Sigma^{2} + \Pi^{2} \right)^{2} + \frac{\lambda}{N} \left(\Sigma^{2} + \Pi^{2} \right) \overline{\Phi_{j}} \Phi_{j} + \frac{\lambda}{\sqrt{N}} \sigma_{cl} \Sigma \left[\overline{\Phi_{j}} \Phi_{j} + \Sigma^{2} + \Pi^{2} - \frac{g^{2}}{\lambda} \Gamma^{2} + \frac{\alpha}{2\lambda} g^{2} \sigma_{cl} \bar{c} c \right] \\ &+ \sqrt{N} \lambda \sigma_{cl}^{3} \Sigma + N \frac{\lambda}{4} \sigma_{cl}^{4} + \mathcal{L}_{ct} \bigg\}, \end{split}$$

Propagators

$$\begin{split} \langle |\mathbf{T} \ \Sigma \left(k, \theta_{1}\right) \Sigma \left(-k, \theta_{2}\right)| \rangle &= -i \, \frac{D^{2} - M_{\Sigma}}{k^{2} + M_{\Sigma}^{2}} \delta_{12}^{2} \,, \\ \langle |\mathbf{T} \ \Phi_{i} \left(k, \theta_{1}\right) \Phi_{j} \left(-k, \theta_{2}\right)| \rangle &= -i \, \delta_{ij} \frac{D^{2} - M_{\Phi_{j}}}{k^{2} + M_{\Phi_{j}}^{2}} \delta_{12}^{2} \,, \\ \langle |\mathbf{T} \ \Pi \left(k, \theta_{1}\right) \Pi \left(-k, \theta_{2}\right)| \rangle &= -i \, \frac{D^{2} - M_{\Pi}}{k^{2} + M_{\Pi}^{2}} \delta_{12}^{2} \,, \\ \langle |\mathbf{T} \ \Gamma_{\alpha} \left(k, \theta_{1}\right) \Gamma_{\beta} \left(-k, \theta_{2}\right)| \rangle &= -\frac{i}{2} \left\{ \frac{D^{2} \left(D^{2} - M_{\Gamma}\right)}{k^{2} \left(k^{2} + M_{\Gamma}^{2}\right)} D_{\alpha} D_{\beta} - \alpha \, \frac{D^{2} \left(D^{2} - M_{\Gamma}\right)}{k^{2} \left(k^{2} + \alpha^{2} M_{\Gamma}^{2}\right)} \, D_{\beta} D_{\alpha} \right\} \delta_{12}^{2} \,, \end{split}$$

where

$$M_{\Gamma} = \frac{g^2}{2} \sigma_{cl}^2$$
, $M_{\Phi_j} = \lambda \sigma_{cl}^2$, $M_{\Sigma} = 3\lambda \sigma_{cl}^2$,

$$M_c = \alpha M_{\Gamma}, \quad M_{\Pi} = \lambda \sigma_{cl}^2 - M_c$$

Figure 1: One-loop contribution to the one point vertex function. The \sum superfield is represented by the dotted line, the Φ_j superfield by double line, the Π by dashed line and the Γ_{α} by the wave line.

with $\sigma_{cl} = \sigma_1 - \theta^2 \sigma_2$, Imposing $S_{\Sigma(1)l}^{(1)} = 0$, one verifies that the one-loop correction is not sufficient to ensure a nontrivial solution to the **gap equation**, i.e., the only solution is $\sigma_{cl} = 0$. Therefore, there is not DSB in the first loop correction.

Figure 2: Two-loops contribution to the one-point vertex function. The countertem is represented by a cross line.

Table I: The result of the diagrams appearing in Fig. 2, omitting an overall factor of $\frac{i}{N^{3/2}}\sigma_{cl}^3\int_p d^2\theta \Sigma(p,\theta)$.

D1	$-\frac{27}{6}\left(\frac{1}{16\pi^2}\right)\lambda^3$	D9	$-3\left(\frac{1}{16\pi^2}\right)\lambda^3$	D17	$-(N-1)\lambda^{3}\zeta$	D25	$-g^{o}\zeta$			
D2	$rac{3}{2}\left(rac{1}{16\pi^2} ight)\lambdag^4$	D10	$-3\left(\frac{1}{16\pi^2}\right)\lambda^3$	D18	$-54 \lambda^3 \zeta$	D26	$-\frac{3}{4}(N-1)$	$\lambda g^4 \zeta$		
D3	$-3\left(\frac{1}{16\pi^2}\right)\lambda^3$	D11	$-2\left(N-1\right)\lambda^{3}$	D19	$\left(- \tfrac{1}{8} \lambda g^4 - \lambda^2 g^2 \right) \zeta$	D27	$rac{9}{4}\lambdag^4\zeta$	- ,		
D4	$-6\left(\frac{1}{16\pi^2}\right)(N-1)\lambda^3$	D12	$rac{1}{2}\left(rac{1}{16\pi^2} ight)\lambdag^4$	D20	$-6\lambda^3\zeta$	D28	$-54 \lambda^3$	ζ		
D5	$-4\left(\tfrac{1}{16\pi^2}\right)\left(N-1\right)^2\lambda^3$	D13	$3\left(\frac{1}{16\pi^2}\right)\lambda g^4$	D21	$-3\left(N-1\right)\lambda^{3}\zeta$	D29	$-10(N-1)\lambda^3$			
D6	$-3\left(\frac{1}{16\pi^2}\right)(N-1)\lambda^3$	D14	$\left(\frac{1}{16\pi^2}\right) \left(N-1\right)\lambdag^4$	D22	$\tfrac{1}{4} \left(N-1\right) \lambda g^4 \zeta$	D30	$-10\lambda^3\zeta$			
$\mathrm{D7}$	$-\left(\frac{1}{16\pi^2}\right)(N-1)$	D15	$\left(\frac{1}{16\pi^2}\right)\lambdag^4$	D23	$rac{3}{2}\lambdag^4\zeta$	D31	$(3 \lambda g^4 + \frac{3}{2} g^6)$			
D8	$rac{1}{4}\left(rac{1}{16\pi^2} ight)\left(N-1 ight)\lambdag^4$	D16	$-4\lambda^3\zeta$	D24	$\left(-\tfrac{3}{2}\lambda^2g^2-\tfrac{3}{4}\lambdag^4\right)\zeta$					
$\mathcal{S}_{\Sigma(1+2)l}^{(1)} = i\sigma_{cl}^3 N^{1/2} \left[\frac{1}{4\pi N} A_1 + \frac{1}{N^2} \left(\zeta A_2 + \frac{1}{16\pi^2} A_3 \right) + A_4 \right] \int_p d^2\theta \Sigma\left(p,\theta\right), \tag{4}$										
where $A_1 = -[9+N]\lambda^2 + \frac{g^4}{4}$, $A_2 = -[114+14N]\lambda^3 - \frac{5}{2}\lambda^2g^2 + \left[\frac{51}{8} - \frac{1}{2}N\right]\lambda g^4 + \frac{1}{2}g^6$,										
$A_3 = \left(\frac{11}{2} - 4N - 4N^2\right)\lambda^3 + \left(\frac{23}{4} + \frac{5}{4}N\right)\lambdag^4$										

A. F. Ferrari. Comput. Phys. Commun., 176:334–346, 2007.

$$\zeta = \frac{1}{32\pi^2} \left\{ \frac{1}{\epsilon} + \ln\left[4\pi e^{1-\gamma}\right] \right\} - \frac{1}{16\pi^2} \ln\left[\frac{\sigma_{cl}^2}{\mu}\right],$$

The unimproved Kählerian effective superpotential

$$K_{eff}^{(0+1+2)l} = K_{eff}^{(0)l} + K_{eff}^{(1+2)l} = \sigma_{cl}^4 \,\mathcal{S}_{eff}^{(0+1+2)l} \tag{5}$$

where

$$\mathcal{S}_{eff}^{(0+1+2)l} = \left[-\frac{N}{4} \lambda - \frac{1}{16\pi N^{1/2}} A_1 + \frac{1}{64\pi^2 N^{3/2}} A_2 \left(\frac{1}{2} - L \right) + \frac{1}{64\pi^2 N^{3/2}} A_3 \right],$$

with $L \equiv \ln \left[\sigma_{cl}^2 / \mu \right]$.

β and γ functions

UFABC

Propagators in symmetric phase

$$\langle |\mathbf{T} \ \Phi_k \left(k, \theta_1 \right) \Phi_l \left(-k, \theta_2 \right) | \rangle = -i \, \delta_{kl} \frac{D^2}{k^2} \delta_{12}^2 ,$$
$$\langle |\mathbf{T} \ \Gamma_\alpha \left(k, \theta_1 \right) \Gamma_\beta \left(-k, \theta_2 \right) | \rangle = \frac{i}{2} \frac{1}{k^2} \left\{ D_\alpha D_\beta - \alpha D_\beta D_\alpha \right\} \delta_{12}^2 ,$$

Table II: Divergent parts of the diagrams appearing in Fig. 3 omitting an overall factor of $i \zeta \int_{p} d^{2}\theta \Phi_{a}(-p,\theta) D^{2} \overline{\Phi}_{a}(p,\theta)$.

Programa de Pós Graduação em Física

D1	0	D4	$-\frac{1}{2}g^4$	D7	$- \tfrac{1}{2} N g^4$	D10	0
D2	0	D5	0	D8	$-rac{1}{4}g^4$	D11	0
D3	$-\frac{1}{2}g^4$	D6	$-rac{1}{4}g^4$	D9	$8N^2\lambda^2$		

0

Figure 3: Two-loop contribution to two-point vertex function of the Φ_a superfield.

$$S_{\Phi\Phi\,2l}^{(2)} = \left[\frac{1}{N^2} i\zeta \left\{8N^2 \lambda^2 - \frac{1}{2} \left(3+N\right) g^4\right\} + \frac{1}{2} i\delta_{\Phi}\right] \int_p d^2\theta \,\Phi_a\left(-p,\theta\right) D^2 \,\bar{\Phi}_a\left(p,\theta\right),\tag{6}$$

Figure 6: Two-loop contribution to four-point vertex function.

Table V: Divergent parts of the diagrams appearing in Fig. 6, omitting an overall factor of

 $i\,\zeta\int_{p,\,s,\,l}\,d^{2}\theta\,\Phi_{a}\left(p,\theta\right)\bar{\Phi}_{a}\left(s,\theta\right)\Phi_{a}\left(l,\theta\right)\bar{\Phi}_{a}\left(-p-s-l,\theta\right).$

D1	$2\lambdag^4$	D7	0	D13	$-8N\lambda^2g^2$	D19	0	D25	$8\lambdag^4$
D2	0	D8	$8\lambdag^4$	D14	$-\frac{1}{2}g^{6}$	D20	$\frac{1}{2}g^{6}$	D26	Ng^6
D3	$-2\lambdag^4$	D9	$-g^6$	D15	$16N\lambda^2g^2$	D21	$-2N\lambdag^4$	D27	$-4N\lambdag^4$
D4	0	D10	$-64 N^2\lambda^3$	D16	$\frac{1}{2} g^{6}$	D22	$-\frac{1}{2}g^{6}$	D28	g^6
D5	$-64N\lambda^2g^2$	D11	$-\lambdag^4$	D17	$64N\lambda^2g^2$	D23	$rac{1}{2}Ng^6$	D29	$2\lambdag^4$
D6	$12N\lambdag^4$	D12	$-rac{1}{4}g^6$	D18	Ng^6	D24	$\frac{1}{2} g^{6}$		

$$\mathcal{S}_{\Phi\bar{\Phi}\Phi\bar{\Phi}\,2l}^{(2)} = \left[\frac{1}{N^3}i\zeta F_1 + i\frac{\delta_\lambda}{N}\right]\int_{p,s,l}d^2\theta \,\Phi_a\left(p,\theta\right)\bar{\Phi}_a\left(s,\theta\right)\Phi_a\left(l,\theta\right)\bar{\Phi}_a\left(-p-s-l,\theta\right),$$

where $F_1 = -64N^2 \lambda^3 + 8N \lambda^2 g^2 + (17 + 6N)\lambda g^4 + \frac{1}{2}(1 + 5N)g^6$.

(7)

А

The counterterms in the minimal subtraction scheme as

$$\begin{split} \delta_{\Phi} &= -\frac{1}{32\pi^2 N^2} \frac{1}{\epsilon} \left\{ 16 \, N^2 \, \lambda^2 - (3+N) \, g^4 \right\} \\ \delta_{\lambda} &= -\frac{1}{32\pi^2 N^2} \frac{1}{\epsilon} \, F_1. \end{split}$$

19

The relation between bare quantities (labeled by subscript zero) and renormalized ones are,

$$\Phi_{a\,0} = Z_{\Phi}^{\frac{1}{2}} \Phi_a \,,$$

$$\lambda_0 \left(\Phi_{a\,0} \bar{\Phi}_{a\,0} \right)^2 = \mu^{2\epsilon} \left(\lambda + \delta_\lambda \right) \left(\Phi_a \bar{\Phi}_a \right)^2,$$

14

where $Z_{\Phi} = (1 + \delta_{\Phi})$.

 $\gamma_{\Gamma} \equiv -\frac{1}{\Gamma_{\alpha}} \frac{1}{d\mu} \Gamma_{\alpha} = 0.$

$$\beta_{\lambda} \equiv \mu \frac{\alpha}{d\mu} \lambda = \beta_{\lambda}^{(3)}, \qquad (8)$$

$$\beta^{(3)} = \frac{12}{3} \lambda^{3} = \frac{1}{3} \lambda^{2} \mu = \frac{1}{3} (11 + 4)$$

$$\beta_{\lambda}^{(3)} = \frac{12}{\pi^2} \lambda^3 - \frac{1}{\pi^2} \lambda^2 y - \frac{1}{8\pi^2 N^2} (11 + 4N) \lambda y^2 - \frac{1}{16\pi^2 N^2} (1 + 5N) y^3,$$

where $y = g^2$.
$$\beta_g \equiv \mu \frac{d}{d\mu} g = 0,$$
 (9) $\gamma_{\Gamma} \equiv -\frac{\mu}{T_{\Gamma}} \frac{d}{d\mu} \Gamma_{\alpha} = 0.$ (10)

,

$$\gamma_{\Phi} \equiv -\frac{\mu}{\Phi_a} \frac{d}{d\mu} \Phi_a = \gamma_{\Phi}^{(2)} = \frac{1}{\pi^2} \lambda^2 - \frac{1}{16 \pi^2 N^2} (3+N) y^2, \tag{11}$$

Now, using the RGE and the β functions

$$\left[\frac{1}{32\pi^2 N^{3/2}}A_2 - \frac{N}{4}\beta_{\lambda} + N\gamma_{\sigma}\lambda'\right] \sigma_{cl}^4 = 0,$$
(12)

where

$$\lambda' = \lambda + \frac{1}{4\pi N^{3/2}} A_1 - \frac{1}{16\pi^2 N^{5/2}} A_2 \left(\frac{1}{2} - L\right) + \frac{1}{16\pi^2 N^{5/2}} A_3,$$

For convenience, we solve (13) for $\gamma \sigma$ assuming $\lambda \neq 0$ as well as $y \leq \lambda < 1$, in which case $\lambda' \sim \lambda$. With this approximation, we obtain

$$\gamma_{\sigma} = \gamma_{\sigma}^{(2)} = \frac{1}{\pi^2} \left\{ \frac{1}{16N^{5/2}} \left[57 + 7N \right] + 3 \right\} \lambda^2 + \frac{1}{\pi^2} \left\{ -\frac{1}{64N^{5/2}} \left[\frac{51}{4} - N \right] - \frac{1}{32N^2} \left(11 + 4N \right) \right\} y^2 - \frac{1}{\pi^2} \left\{ -\frac{5}{64N^{5/2}} + \frac{1}{4N} \right\} \lambda y - \frac{1}{64\pi^2} \left\{ \frac{1}{N^{5/2}} + \frac{1}{N^2} \left(1 + 5N \right) \right\} \lambda^{-1} y^3,$$

$$\left[-2\left(1+\gamma_{\sigma}\right)\frac{\partial}{\partial L}+\beta_{\lambda}\frac{\partial}{\partial\lambda}-\gamma_{\sigma}\sigma_{cl}\frac{\partial}{\partial\sigma_{cl}}\right]K_{eff}=0.$$
(13)

 $K_{eff}^{I} \equiv \sigma_{cl}^{4} S_{eff} \left(\lambda, y, L \left(\sigma \left(\mu \right), \mu \right) \right) \,,$

The contributions to S_{eff} according to the relation between the aggregate powers of coupling constants and the power of the logarithm L,

$$\begin{split} \mathcal{S}_{eff} = & \mathcal{S}_{eff}^{LL} + \mathcal{S}_{eff}^{NLL} + \mathcal{S}_{eff}^{2NLL} + \dots \\ = & \sum_{\substack{n,m \\ (n+m \geq 1)}} C_{n,m}^{LL} \, \lambda^n \, y^m \, L^{n+m-1} + \sum_{\substack{n,m \\ (n+m \geq 2)}} C_{n,m}^{NLL} \, \lambda^n \, y^m \, L^{n+m-3} + \dots \\ & + \sum_{\substack{n,m \\ (n+m \geq 3)}} C_{n,m}^{2NLL} \, \lambda^n \, y^m \, L^{n+m-3} + \dots . \end{split}$$

Hereafter, LL stands for Leading Logarithms, NLL for Next-to-Leading Logarithms, and so on.

The unimproved potential in function of C constants

$$K_{eff}^{(0+1+2)l} = K_{eff}^{(0)l} + K_{eff}^{(1+2)l} = \sigma_{cl}^4 \,\mathcal{S}_{eff}^{(0+1+2)l}$$

17

$$S_{eff}^{(0+1+2)l} = C_{1,0}^{LL} \lambda + C_{2,0}^{NLL} \lambda^2 + C_{0,2}^{NLL} y^2 + C_{3,0}^{2NLL} \lambda^3 + C_{2,1}^{2NLL} \lambda^2 y + C_{1,2}^{2NLL} \lambda y^2 + C_{0,3}^{2NLL} y^3 + \left[C_{3,0}^{NLL} \lambda^3 + C_{2,1}^{NLL} \lambda^2 y + C_{1,2}^{NLL} \lambda y^2 + C_{0,3}^{NLL} y^3 \right] L,$$
(14)

where

$$\begin{split} C_{1,0}^{LL} &= -\frac{N}{4}, \quad C_{2,0}^{NLL} = \frac{9+N}{16\pi N^{1/2}}, \\ C_{3,0}^{NLL} &= \frac{114+14N}{64\pi^2 N^{3/2}}, \quad C_{3,0}^{2NLL} = \frac{1}{64\pi^2 N^{3/2}} \left(\frac{103}{2} - 11N - 4N^2\right), \\ C_{2,1}^{NLL} &= \frac{5}{128\pi^2 N^{3/2}}, \quad C_{2,1}^{2NLL} = -\frac{5}{256\pi^2 N^{3/2}}, \\ C_{0,2}^{NLL} &= -\frac{1}{64\pi N^{1/2}}, \quad C_{1,2}^{NLL} = -\frac{1}{128\pi^2 N^{3/2}} \left[\frac{51}{4} - N\right], \\ C_{1,2}^{2NLL} &= \frac{1}{64\pi^2 N^{3/2}} \left(\frac{143}{16} + N\right), \quad C_{0,3}^{NLL} = -\frac{1}{128\pi^2 N^{3/2}}, \\ C_{0,3}^{2NLL} &= \frac{1}{256\pi^2 N^{3/2}}. \end{split}$$

The renormalization group equation is given by

$$-\frac{\partial}{\partial L} S_{eff}^{LL} + \left[\beta_{\lambda}^{(3)} \frac{\partial}{\partial \lambda} - 4 \gamma_{\sigma}^{(2)}\right] S_{eff}^{LL} - 2 \frac{\partial}{\partial L} S_{eff}^{NLL} + \left[\left[-2 \gamma_{\sigma}^{(2)} \frac{\partial}{\partial L}\right] S_{eff}^{LL} + \left[\beta_{\lambda}^{(3)} \frac{\partial}{\partial \lambda} - 4 \gamma_{\sigma}^{(2)}\right] S_{eff}^{NLL} - 2 \frac{\partial}{\partial L} S_{eff}^{2NLL}\right] = 0.$$
(15)

Terms of order $\lambda^n y^m L^{n+m-2}$

$$-\frac{\partial}{\partial L} \mathcal{S}_{eff}^{LL} = 0, \qquad (n+m-1) C_{n,m}^{LL} = 0, \ (n+m \ge 1) .$$

$$\mathcal{S}_{eff}^{LL} = C_{1,0}^{LL} \lambda \,.$$

$$C_{n,m}^{LL} = 0 \qquad n+m \ge 2,$$

There are not leading logarithms corrections at higher loop orders.

That complies with the general picture that supersymmetric models have less divergences and have simpler Renormalization properties.

Terms of order $\lambda^n y^m L^{n+m-3}$

$$\left[\beta_{\lambda}^{(3)}\frac{\partial}{\partial\lambda} - 4\gamma_{\sigma}^{(2)}\right]\mathcal{S}_{eff}^{LL} - 2\frac{\partial}{\partial L}\mathcal{S}_{eff}^{NLL} = 0.$$
(16)

with

$$C_{n,m}^{NLL} = \frac{[n+m-2]^{-1}}{64\pi^2 N^2} \left\{ \left[384N^2 \left(n-3\right) - \frac{4}{N^{1/2}} \left[114+14N \right] \right] C_{n-2,m}^{LL} - \left[32N \left(n-2\right) + \frac{1}{N^{1/2}} 10 \right] C_{n-1,m-1}^{LL} - \left[\left(44+16N\right) \left(n-1\right) - \frac{1}{N^{1/2}} \left[\frac{51}{2} - 2N \right] \right] C_{n,m-2}^{LL} - 2 \left[\left(1+5N\right) \left(n\right) - \frac{1}{N^{1/2}} \right] C_{n+1,m-3}^{LL} \right\}$$

The solution associate to this order

$$\mathcal{S}_{eff}^{NLL} = C_{2,0}^{NLL} \, \lambda^2 + C_{0,2}^{NLL} \, y^2 + \left[C_{3,0}^{NLL} \, \lambda^3 + C_{2,1}^{NLL} \, \lambda^2 \, y + C_{1,2}^{NLL} \, \lambda \, y^2 + C_{0,3}^{NLL} \, y^3 \right] \, L,$$

Again there are not new corrections.

Terms of order $\lambda^n y^m L^{n+m-4}$

$$\left\{ \left[-2\gamma_{\sigma}^{(2)}\frac{\partial}{\partial L} \right] \mathcal{S}_{eff}^{LL} + \left[\beta_{\lambda}^{(3)}\frac{\partial}{\partial\lambda} - 4\gamma_{\sigma}^{(2)} \right] \mathcal{S}_{eff}^{NLL} - 2\frac{\partial}{\partial L} \mathcal{S}_{eff}^{2NLL} \right\} = 0 \quad (17)$$

with

$$\begin{split} C_{n,m}^{2NLL} &= \frac{1}{32\pi^2 N^2} \left\{ \left(\frac{1}{N^{1/2}} \left[[114 + 14N] + 96N^{5/2} \right] C_{n-2,m}^{LL} \\ &+ \frac{1}{N^{1/2}} \left[\frac{5}{2} - 8N^{3/2} \right] C_{n-1,m-1}^{LL} - \frac{1}{N^{1/2}} \left[\frac{51}{8} - \frac{1}{2}N + N^{1/2} \left(11 + 4N \right) \right] C_{n,m-2}^{LL} \\ &- \frac{1}{N^{1/2}} \left[\frac{1}{2} + \frac{1}{2}N^{1/2} \left(1 + 5N \right) \right] C_{n+1,m-3}^{LL} \right) + \\ &+ \frac{1}{2} \left(n + m - 3 \right)^{-1} \left(\left[384N^2 \left(n - 3 \right) - \frac{4}{N^{1/2}} \left[114 + 14N \right] \right] C_{n-2,m}^{NLL} \\ &- \left[32N \left(n - 2 \right) + \frac{10}{N^{1/2}} \right] C_{n-1,m-1}^{NLL} - \left[\left(44 + 16N \right) \left(n - 1 \right) - \frac{4}{N^{1/2}} \left[\frac{51}{8} - \frac{1}{2}N \right] \right] C_{n,m-2}^{NLL} \\ &- 2 \left[\left(1 + 5N \right) n - \frac{1}{N^{1/2}} \right] C_{n+1,m-3}^{NLL} \right\}, (n + m \ge 4) \end{split}$$

$$S_{eff}^{2NLL} = C_{3,0}^{2NLL} \lambda^3 + C_{2,1}^{2NLL} \lambda^2 y + C_{1,2}^{2NLL} \lambda y^2 + C_{0,3}^{2NLL} y^3 + \left[C_{5,0}^{2NLL} \lambda^5 + C_{4,1}^{2NLL} \lambda^4 y + C_{3,2}^{2NLL} \lambda^3 y^2 + C_{2,3}^{2NLL} \lambda^2 y^3 + C_{1,4}^{2NLL} \lambda y^4 + C_{0,5}^{2NLL} y^5\right] L^2.$$

Here, in this order there are new contribution to C values:

$$\begin{split} C_{4,0}^{2NLL} &= C_{3,1}^{2NLL} = C_{2,2}^{2NLL} = C_{1,3}^{2NLL} = C_{0,4}^{2NLL} = 0, \\ C_{5,0}^{2NLL} &= \frac{1}{32\pi^2 N^2} \left[192 \, N^3 - \frac{1}{N^{1/2}} \left[114 + 14N \right] \right] C_{3,0}^{NLL}, \\ C_{4,1}^{2NLL} &= \frac{1}{32\pi^2 N^2} \left\{ \left[96 \, N^2 - \frac{1}{N^{1/2}} \left[114 + 14N \right] \right] C_{2,1}^{NLL} - \left[16 \, N + \frac{5}{2 \, N^{1/2}} \right] C_{3,0}^{NLL} \right\}, \\ C_{3,2}^{2NLL} &= -\frac{1}{32\pi^2 N^2} \left\{ \frac{1}{N^{1/2}} \left[114 + 14N \right] C_{1,2}^{NLL} + \left[8 \, N + \frac{5}{2 \, N^{1/2}} \right] C_{2,1}^{NLL} \right. \\ &+ \left[\frac{1}{2} \left(44 + 16N \right) + \frac{1}{N^{1/2}} \left[\frac{51}{8} - \frac{1}{2} N \right] \right] C_{3,0}^{NLL} \right\}, \end{split}$$

$$\begin{split} C_{2,3}^{2NLL} &= -\frac{1}{32\pi^2 N^2} \left\{ \left[96\,N^2 + \frac{1}{N^{1/2}} \left[114 + 14N \right] \right] C_{0,3}^{NLL} + \frac{5}{2\,N^{1/2}}\,C_{1,2}^{NLL} \right. \\ & \left. + \left[\frac{1}{4} \left(44 + 16N \right) - \left[\frac{51}{8} - \frac{1}{2}N \right] \right] C_{2,1}^{NLL} + \left[\left(1 + 5N \right) - \frac{1}{2\,N^{1/2}} \right] C_{3,0}^{NLL} \right\}, \end{split}$$

$$\begin{split} C_{1,4}^{2NLL} &= -\frac{1}{32\pi^2 N^2} \left\{ \left[\frac{5}{2 N^{1/2}} - 8 N \right] C_{0,3}^{NLL} + \frac{1}{N^{1/2}} \left[\frac{51}{8} - \frac{1}{2} N \right] C_{1,2}^{NLL} \right. \\ &\left. + \frac{1}{2} \left[(1+5N) - \frac{1}{N^{1/2}} \right] C_{2,1}^{NLL} \right\}, \end{split}$$

$$C_{0,5}^{2NLL} = \frac{1}{32\pi^2 N^2} \left\{ \left[\frac{1}{4} \left(44 + 16N \right) + \frac{1}{N^{1/2}} \left[\frac{51}{8} - \frac{1}{2}N \right] \right] C_{0,3}^{NLL} + \frac{1}{2N^{1/2}} C_{1,2}^{NLL} \right\},$$

while other values $C_{n,m}^{2NLL}$ are zero.

Dinamical breaking of symmetry

The improved Kählerian effective superpotential

$$K_{eff}^{I}(\sigma_{cl}) = \sigma_{cl}^{4} \left\{ S_{eff}^{LL} + S_{eff}^{NLL} + S_{eff}^{2NLL} + \rho \right\},$$
(18)

The component version of the improved Kählerian effective superpotential

$$V_{eff}^{I} = \int d^{2}\theta \, K_{eff}^{I}\left(\sigma_{cl}\right) = \sigma_{2} \, \frac{\partial}{\partial\sigma_{1}} \, K_{eff}^{I}\left(\sigma_{1}\right) = \left[\frac{\partial}{\partial\sigma_{1}} \, K_{eff}^{I}\left(\sigma_{1}\right)\right]^{2}, \tag{19}$$

The renormalization constant ρ is fixed using the renormalization condition.

$$\frac{d^{6}}{d\sigma_{1}^{6}}V_{eff}^{I}\left(\sigma_{1}\right)\Big|_{\sigma_{1}^{2}=\mu} = 6!\frac{N}{2}\,\lambda^{2},\qquad(20)$$

$$\left. \frac{d}{d\sigma_1} V_{eff}^I(\sigma_1) \right|_{\sigma_1^2 = \mu} = 0.$$
 (21)

(22)

This equation is used to determine the value of λ as a function of the free parameters **y** and **N**.

 $M_{\Sigma} = \left. \frac{d^2}{d\sigma_1^2} V_{eff}^I(\sigma_1) \right|_{\sigma_1^2 = \mu} > 0.$

Minimum of the potential.

Dinamical breaking of symmetry

Figure 7: Comparison of the unimproved (continuous line) and improved (dashed line) potentials, with the same numerical values of y, N and as the example in the text.

Example: Choosing g = 0.6 and N = 1, we found that $\lambda = 0.0242$ for the unimproved effective potential and $\lambda^{I} = 0.0269$ for its improved version. We see that the enforcement of the RGE on the calculation of the effective potential provides only a quantitative improvement on the parameters of the DSB.

- We had to calculate perturbative corrections to the vertex functions up to the twoloop level, finding the renormalization group β and γ functions.
- With theses function, together with the RGE, was possible to compute K_{eff}^{I} and, from this, we found **improved component effective potential** V_{eff}^{I} .
- This potential was used to study **DSB** in our model, and compared it with V_{eff} .
- The end result was that DSB is operational for all reasonable values of the free parameters, and that the RGE improvement produces only a small quantitative change in the properties of the model. In this particular model, the effects of the improvement in the phase structure of the model were not so dramatic as in its non supersymmetric counterpart, however the question remains whether the same might happen in different models.
- A future work we going to study for the calculation of the auxiliary field effective superpotential F $\Gamma[\sigma_{cl}] = \int d^5 z \, K(\sigma_{cl}) + \int d^5 z \, F(\sigma_{cl}, D_\alpha \sigma_{cl}, D^2 \sigma_{cl})$).

Programa de Pós Graduação em Física

Superfileds conventions (Apendix B)

$$\begin{split} \Phi\left(x,\theta\right) &= \varphi\left(x\right) + \theta^{\alpha}\Psi_{\alpha}\left(x\right) - \theta^{2}F\left(x\right), \qquad \varphi\left(x\right) = \Phi\left(x,\theta\right)|, \qquad F\left(x\right) = D^{2}\Phi\left(x,\theta\right)|, \\ \Psi_{\alpha}\left(x\right) &= D_{\alpha}\Phi\left(x,\theta\right)|, \end{split}$$

$$\begin{split} W_{\alpha}\left(x,\theta\right) &= \rho_{\alpha}\left(x\right) + \theta^{\beta} f_{\beta\alpha}\left(x\right) - i\theta^{2} \partial_{\alpha}^{\ \beta} \rho_{\beta}\left(x\right),\\ \rho_{\alpha}\left(x\right) &= W_{\alpha}\left(x,\theta\right)|, \qquad f_{\beta\alpha}\left(x\right) = \frac{1}{2} \left(\partial_{\beta\rho} A^{\rho}_{\ \alpha} + \partial_{\alpha\rho} A^{\rho}_{\ \beta}\right) = D_{\beta} W_{\alpha}\left(x,\theta\right)|,\\ i\partial_{\alpha}^{\ \beta} \rho_{\beta}\left(x\right) &= D^{2} W_{\alpha}\left(x,\theta\right)|, \end{split}$$

$$\begin{split} \Gamma_{\alpha}\left(x,\theta\right) &= \chi_{\alpha}\left(x\right) - \theta_{\alpha}B\left(x\right) + i\theta^{\beta}A_{\alpha\beta}\left(x\right) - \theta^{2}\left[2\rho_{\alpha}\left(x\right) + i\partial_{\beta\alpha}\chi^{\beta}\left(x\right)\right],\\ \chi_{\alpha}\left(x\right) &= \Gamma_{\alpha}\left(x,\theta\right)|, \qquad \qquad B\left(x\right) = \frac{1}{2}\left[D^{\alpha}\Gamma_{\alpha}\left(x,\theta\right)|,\\ A_{\alpha\beta}\left(x\right) &= -\frac{i}{2}\left[D_{\alpha}\Gamma_{\beta}\left(x,\theta\right) + D_{\beta}\Gamma_{\alpha}\left(x,\theta\right)\right]|, \qquad 2\rho_{\alpha}\left(x\right) + i\partial_{\beta\alpha}\chi^{\beta}\left(x\right) = D^{2}\Gamma_{\alpha}\left(x,\theta\right)|. \end{split}$$