MadGolem & aMC@NLO: further on the road of automation

David López-Val

together with D. Gonçalves Netto (IPPP, Durham), T. Plehn (Heidelberg U.), K. Mawatari (VUB), M. Zaro (LPTHE Paris)

CP3 - Université catholique de Louvain

SUSY 2014, Manchester (UK) - July 21st 2014

Outline

Outline

2 Automated NLO

- Architecture
- One recent application: 3gen@NLO

Towards automated NLO+PS

Automated NLO

- Architecture
- One recent application: 3gen@NLO

3 Towards automated NLO+PS

NEXT-TO-LEADING ORDER

NEW PHYSICS

PROSPINO

David López-Val - CP3 Université catholique de Louvain MadGolem & aMC@NLO: further on the road of automation

PROSPINO =

David López-Val - CP3 Université catholique de Louvain MadGolem & aMC@NLO: further on the road of automation

Outline

2 Automated NLO

- Architecture
- One recent application: 3gen@NLO

First complete fully automated NLO calculations of BSM $2 \rightarrow 2$

The MadGolem program

First complete fully automated NLO calculations of BSM $2 \rightarrow 2$

The MadGolem program

First complete fully automated NLO calculations of BSM $2 \rightarrow 2$

BSM phenomenology @ NLO

- Total NLO rates and K factors
- unconstrained Parameter space surveys
- Anatomy of the NLO quantum effects (topologies, subchannels)
- Analytical expression for the one-loop amplitudes
- Scale dependence theory uncertainties
- NLO distributions

Latest updates: MSSM@NLO with finite quark mass & squark mixing

David López-Val - CP3 Université catholique de Louvain MadGolem & aMC@NLO: further on the road of automation

The MadGolem program

First complete fully automated NLO calculations of BSM $2 \rightarrow 2$

BSM phenomenology @ NLO

- Total NLO rates and K factors
- unconstrained Parameter space surveys
- Anatomy of the NLO quantum effects (topologies, subchannels)
- Analytical expression for the one-loop amplitudes
- Scale dependence theory uncertainties
- NLO distributions
- Latest updates: MSSM@NLO with finite quark mass & squark mixing

From Feynman diagrams

... to analytic amplitudes ...

21 arr 2017 Aureux (prost es, - 6%);	5 8 8
n gin gene geste gester gester gester de sons inner inter entre tet generatient generatient and gester and an an	
FUN[4] := BUBd4(S12,MG02,MG02):	î
FUN[5] := BUBd4(S12,MT12,MT12):	
FUN[6] := BUBd4(S12,TMASS2,TMASS2):	
FUN[7] := TADd4(MT12):	
FUN[8] := TRId4(MT12,MT12,S12,MT12,0,0):	- 11
<pre>FUN[9] := TRId4(MT12,MT12,S12,TMASS2,MG02,MG02):</pre>	- 11
FUN[10] := TRId4(MT12,S12,MT12,MT12,0):	- 11
FUN[11] := TRId4(MT12,S12,MT12,TMASS2,TMASS2,MG02):	
#	
# 2 non-zero out of 4 helicity amplitudes found	
# 1 unique helicity amplitudes found	
# 1974 - 1971 - 20	n
	- 11
Dase_nel15 := [2, 3]:	- 11
$\begin{array}{c} \text{unique}_{\text{restricts}} := [2];\\ \text{unique}_{\text{restricts}} := [2];\\ \end{array}$	- 11
Symmetry_netro :- [[2, 5]];	- 11
	- 11
# #	- 11
BeferenceVector ·= [k3b k3b k1 k1]·	- 11
ETNAL GRAPH LTST $= [2, 3, 4, 5, 6, 7]$	- 11
#	- 11
GRAPH_COFFE1_4, 2, 1, 1, 2] := -1/16×GG2*GGT2×(S23*2-2×MT12×S23+MT12*2+S23*S12)×(MT12×GT1G0P2×GT1G0M1+h	1T1
GRAPH COEFF [4, 2, 2, 1, 2] := 3/16*6G2*GGI2*(S23^2-2*MT12*S23*MT12^2+S23*S12)*(MT12*GT160P2*GT160M1+MT	12
GRAPH COEFF [4, 2, 1, 1, 4] := 1/32*GG2*GG12*(S23^2-2*MT12*S23+MT12^2+S23*S12)*(-2*MT12*GT160P1*GT160M2	2-2
GRAPH COEFF [4, 2, 2, 1, 4] := -3/32×GG2*GG12×(S23^2-2×MT12×S23+MT12^2+S23×S12)×(-2*MT12×GT160P1×GT16	12-
GRAPH COEFF [4, 2, 1, 1, 9] := -1/16×GG2*GG12×(S23^2-2×MT12×S23+MT12^2+S23*S12)×(-MG0^2×MT12*GT160P1*GT	'1G
GRAPH_COEFF [4, 2, 2, 1, 9] := 3/16*GG2*GGI2*(S23^2-2*MT12*S23+MT12^2+S23*S12)*(-MG0^2*MT12*GT1G0P1*GT1	GO
SPINOR_FAC[4, 9]-:= In Spat(k2,k3)*InvSpbb(k1,k3):	- 11
	Ų
4	142

David López-Val - CP3 Université catholique de Louvain

Architecture

3gen@NLO - the physics case

- Naturalness little hierarchy 👄 Natural SUSY
- RG effects, squark mixing, non-universal soft-breaking
- Implications for Higgs physics, Astrophysics & Cosmology

• Experimentally :

- Compelling decay patterns eventually rich in t/b
- t/b-rich final-states from \tilde{g} decays
- Loose mass constraints (e.g. for compressed $m_{\tilde{t}_1} m_{\chi_1^0}$ spectra)
- ullet associated production with χ^\pm

3gen@NLO - Benchmarks

• Light SUSY non-decoupling SUSY Higgs sector Han et al. ['13]

	$m_{\tilde{t}_1}$	$m_{\tilde{t}_2}$	$m_{\tilde{b}_1}$	$m_{\tilde{b}_2}$	$m_{\chi^0_1}$	$m_{\chi_1^-}$	$m_{ ilde{g}}$
NSUSY1	434.93	990.31	891.56	1356.94	216.79	222.60	3202.64
NSCMSSM-10.2.2	398.43	682.54	572.4	684.6	231.32	425.38	1354.71
Light1	374.43	2022.88	387.88	2011.63	301.30	498.87	1102.32

- Virtual corrections $\mathcal{O}(\alpha_s)$ virtual gluon/gluino/squark exchange
- Real corrections : quark and gluon emission off the initial partons and the final-state squark

i) self-energy insertions; ii) vertex corrections; iii) box diagrams; iv) real emission

- Virtual corrections $\mathcal{O}(\alpha_s)$ virtual gluon/gluino/squark exchange
- Real corrections : quark and gluon emission off the initial partons and the final-state squark

i) self-energy insertions; ii) vertex corrections ; iii) box diagrams; iv) real emission

- Virtual corrections $\mathcal{O}(\alpha_s)$ virtual gluon/gluino/squark exchange
- Real corrections : quark and gluon emission off the initial partons and the final-state squark

i) self-energy insertions; ii) vertex corrections; iii) box diagrams ; iv) real emission

- Virtual corrections $\mathcal{O}(\alpha_s)$ virtual gluon/gluino/squark exchange
- Real corrections : quark and gluon emission off the initial partons and the final-state squark

i) self-energy insertions; ii) vertex corrections; iii) box diagrams; iv) real emission

	$pp \to \tilde{t}_1 \tilde{t}_1$			$pp ightarrow ilde{b}_1 ilde{b}_1$		
	σ^{LO}	$\sigma^{\sf NLO}$	K	σ^{LO}	σ^{NLO}	K
NSUSY1	881.0	1380.0	1.57	10.8	18.0	1.70
NSUSY2	12.1	20.4	1.69	0.11	0.23	1.87
NSCMSSM-10.2.2	1430.0	2210	1.54	180	290	1.61
NSCMSSM-40.2.2	14800.0	21800	1.47	558.0	882.0	1.58
NSCMSSM-40.3.2	4680.0	7010.0	1.50	28900	46200	1.60
Light1	2010	3080	1.53	1660.0	2550.0	1.53

(all rates in fb for the LHC@14 TeV)

3gen@NLO - associated stop-chargino

	$pp \to \tilde{t}_1 \chi_1^-$				
	σ^{LO}	$\sigma^{\sf NLO}$	K		
NSUSY1	40.97	49.98	1.22		
NSUSY2	1.94	2.51	1.29		
NSCMSSM-10.2.2	13.40	20.14	1.50		
NSCMSSM-40.2.2	47.83	71.21	1.48		
NSCMSSM-40.3.2	53.39	78.94	1.48		
Light1	9.96	10.51	1.05		

(all rates in fb for the LHC@14 TeV)

3gen@NLO - associated stop-chargino

3gen@NLO - associated stop-chargino

Gonçalves Netto, DLV, Mawatari, Plehn [arXiv:1407.4302]

Outline

Automate

- Architecture
- One recent application: 3gen@NLO

Towards automated NLO+PS

4 Summary

Beyond fixed-order predictions

Automating NLO+PS

- Whys and wherefores
 - Improved accuracy in the distribution shapes
 - Realistic description of final-states
 - Better comparison to data

The challenge

Matching fixed-order to PS consistently

🌲 🛛 Our strategy

- MadGolem Gonçalves Netto, DLV, Mawatari, Plehn, Wigmore arXiv:1303.0845
- MadGraph5_aMC@NLO Alwall, Zaro, et al. arXiv:1405.0301

MadGolem

Loop amplitudes UV renormalization OS subtraction

MadGraph5_AMC@NLO

User interfaces Tree amplitudes MadEvent MadFKS MC@NLO

Translation routines

Binoth LH accord

Beyond fixed-order predictions

Gonçalves Netto, DLV, Mawatari, Zaro [in progress]

Beyond fixed-order predictions

Outline

2 Auto

- Architecture
- One recent application: 3gen@NLO

Towards automated NLO+PS

MadGolem carried to completion

- $\bullet\,$ Automated NLO cross-sections & distributions for $2 \rightarrow 2$ processes
- Highly modular, independent add-on to MadGraph/MadEvent
- Analytical, Feynman-diagrammatic one-loop amplitudes tailored for BSM
- Automated UV renormalization, SUSY dipole & OS subtraction

MadGolem carried to completion

- ${\color{black}\bullet}$ Automated NLO cross-sections & distributions for $2\rightarrow 2$ processes
- Highly modular, independent add-on to MadGraph/MadEvent
- Analytical, Feynman-diagrammatic one-loop amplitudes tailored for BSM
- Automated UV renormalization, SUSY dipole & OS subtraction

MadGolem carried to completion

- ${\color{black}\bullet}$ Automated NLO cross-sections & distributions for $2\rightarrow 2$ processes
- Highly modular, independent add-on to MadGraph/MadEvent
- Analytical, Feynman-diagrammatic one-loop amplitudes tailored for BSM
- Automated UV renormalization, SUSY dipole & OS subtraction

MadGolem carried to completion

- ${\color{black}\bullet}$ Automated NLO cross-sections & distributions for $2\rightarrow 2$ processes
- Highly modular, independent add-on to MadGraph/MadEvent
- Analytical, Feynman-diagrammatic one-loop amplitudes tailored for BSM
- Automated UV renormalization, SUSY dipole & OS subtraction

MadGolem carried to completion

- ${\color{black}\bullet}$ Automated NLO cross-sections & distributions for $2\rightarrow 2$ processes
- Highly modular, independent add-on to MadGraph/MadEvent
- Analytical, Feynman-diagrammatic one-loop amplitudes tailored for BSM
- Automated UV renormalization, SUSY dipole & OS subtraction

MadGolem carried to completion

- Automated NLO cross-sections & distributions for $2 \rightarrow 2$ processes
- Highly modular, independent add-on to MadGraph/MadEvent
- Analytical, Feynman-diagrammatic one-loop amplitudes tailored for BSM
- Automated UV renormalization, SUSY dipole & OS subtraction

MadGolem carried to completion

- Automated NLO cross-sections & distributions for $2 \rightarrow 2$ processes
- Highly modular, independent add-on to MadGraph/MadEvent
- Analytical, Feynman-diagrammatic one-loop amplitudes tailored for BSM
- Automated UV renormalization, SUSY dipole & OS subtraction

BACKUP

SLIDES

David López-Val - CP3 Université catholique de Louvain MadGolem & aMC@NLO: further on the road of automation

