One-loop corrections to gaugino (co-)annihilation into quarks in the MSSM

Björn Herrmann (LAPTh Annecy-le-Vieux, Université de Savoie, CNRS)

DM@NL collaboration — <u>http://dmnlo.hepforge.org</u>

B. Herrmann, M. Klasen, K. Kovarik, M. Meinecke, P. Steppeler Phys. Rev. D 89: 114012 (2014) — arXiv:1404.2931 [hep-ph]

J. Harz, B. Herrmann, M. Klasen, K. Kovarik — to be published

J. Harz, B. Herrmann, M. Klasen, K. Kovarik, Q. Le Boulc'h Phys. Rev. D 87: 054031 (2013) — arXiv:1212.5241 [hep-ph]

B. Herrmann, M. Klasen, K. Kovarik Phys. Rev. D 79: 061701 (2009) — arXiv:0901.0481 [hep-ph]

B. Herrmann, M. Klasen, K. Kovarik Phys. Rev. D 80: 085025 (2009) — arXiv:0907.0030 [hep-ph]

B. Herrmann, M. Klasen Phys. Rev. D 76: 117704 (2007) — arXiv:0709.0043 [hep-ph]

We consider neutralino dark matter in the Minimal Supersymmetric Standard Model (MSSM)

$$\tilde{\chi}_{1}^{0} = Z_{1\tilde{B}}\tilde{B} + Z_{1\tilde{W}}\tilde{W} + Z_{1\tilde{H}_{1}}\tilde{H}_{1} + Z_{1\tilde{H}_{2}}\tilde{H}_{2}$$

We consider neutralino dark matter in the Minimal Supersymmetric Standard Model (MSSM)

$$\tilde{\chi}_{1}^{0} = Z_{1\tilde{B}}\tilde{B} + Z_{1\tilde{W}}\tilde{W} + Z_{1\tilde{H}_{1}}\tilde{H}_{1} + Z_{1\tilde{H}_{2}}\tilde{H}_{2}$$

Time evolution of the neutralino number density described by **Boltzmann equation** — solution leads to **prediction of neutralino relic density** (if masses and interactions known) — comparison to recent cosmological data (WMAP, Planck,...)

We consider neutralino dark matter in the Minimal Supersymmetric Standard Model (MSSM)

$$\tilde{\chi}^{0}_{1} = Z_{1\tilde{B}}\tilde{B} + Z_{1\tilde{W}}\tilde{W} + Z_{1\tilde{H}_{1}}\tilde{H}_{1} + Z_{1\tilde{H}_{2}}\tilde{H}_{2}$$

Time evolution of the neutralino number density described by **Boltzmann equation** — solution leads to prediction of neutralino relic density (if masses and interactions known)

— comparison to recent cosmological data (WMAP, Planck,...)

Several computational tools allow an efficient calculation of the (neutralino) relic density:

- DarkSUSY Bergström, Edsjö, Gondolo et al. 2004-2014

Annihilation cross-section includes all relevant annihilation and co-annihilation processes

Only co-annihilations between almost mass-degenerate particles numerical relevant — typical examples in MSSM: other **neutralinos**, **charginos**, stau, stop Annihilation cross-section includes all relevant annihilation and co-annihilation processes

Only co-annihilations between almost mass-degenerate particles numerical relevant — typical examples in MSSM: other **neutralinos**, **charginos**, stau, stop

All processes implemented in public codes — but only at the (effective) tree-level Higher-order effects included only for strong and Yukawa couplings

$$h_{Abb} \propto \frac{\overline{m}_b(Q)}{1+\Delta_b} \tan\beta$$

Higher-order corrections may give important contributions to cross-sections More precise theory predictions needed to keep up with exp. improvements!

For gaugino (co-)annihilation, the following diagrams are relevant up to one-loop in α_s :

4

All contributions computed analytically and implemented in **numerical Fortran package DM@NL** — extension to existing codes to improve theoretical prediction

All contributions computed analytically and implemented in **numerical Fortran package DM@NL** — extension to existing codes to improve theoretical prediction

All contributions computed analytically and implemented in **numerical Fortran package DM@NL** — **extension to existing codes** to improve theoretical prediction

DM@NL includes the following classes of processes:

 $\widetilde{\chi}_i^{0,\pm} \widetilde{\chi}_j^{0,\pm} \to q \overline{q}'$

this talk

 $\tilde{\chi}_i^0 \tilde{q}_i \to qH, qV, qg$

Julia's talk (monday 21/07, "Precision SUSY")

 $\tilde{q}_i \tilde{q}_i^{(*)} \to VV, HH, HV, q\bar{q}$

work in progress...

Virtual contributions include UV-divergent integrals — convergence achieved using dimensional reduction and dedicated on-shell/DR renormalisation scheme Herrmann, Klasen, Kovarik, Meinecke, Steppeler (2014); Harz, Herrmann, Klasen, Kovarik (to be published)

Virtual contributions include UV-divergent integrals — convergence achieved using dimensional reduction and dedicated on-shell/DR renormalisation scheme Herrmann, Klasen, Kovarik, Meinecke, Steppeler (2014); Harz, Herrmann, Klasen, Kovarik (to be published)

Loop diagrams contain IR-divergencies, which vanish when taking into account the real emission of a gluon — dipole subtraction method Catani, Seymour (2001)

$$\sigma_{\rm NLO} = \int_{3} \left[\mathrm{d}\sigma^{\rm R} \Big|_{\epsilon=0} - \mathrm{d}\sigma^{\rm A} \Big|_{\epsilon=0} \right] + \int_{2} \left[\mathrm{d}\sigma^{\rm V} + \int_{1} \mathrm{d}\sigma^{\rm A} \right]_{\epsilon=0}$$

Study three example scenarios in the pMSSM (11 parameters at the TeV scale) featuring different phenomenological aspects Herrmann, Klasen, Kovarik, Meinecke, Steppeler (2014) — Numerical values obtained using **SPheno** and **micrOMEGAs**

	$m_{ ilde{\chi}_1^0}$	$m_{ ilde{\chi}^0_2}$	$m_{ ilde{\chi}^0_3}$	$m_{ ilde{\chi}_4^0}$	$m_{\tilde{\chi}_1^{\pm}}$	$m_{\tilde{\chi}_2^{\pm}}$	$Z_{1\tilde{B}}$	$Z_{1\tilde{W}}$	$Z_{1\tilde{H}_1}$	$Z_{1\tilde{H}_2}$	m_{h^0}	$\Omega_{ ilde{\chi}_1^0} h^2$
Ι	738.2	802.4	1288.4	1294.5	802.3	1295.1	-0.996	0.049	-0.059	0.037	126.3	0.1243
II	698.9	850.5	854.0	1940.2	845.6	1940.4	-0.969	0.012	-0.187	0.162	125.2	0.1034
III	1106.7	1114.9	1855.0	1865.6	1109.6	1856.3	0.046	-0.082	0.706	-0.702	126.0	0.1190

	Scenario I	Scenario II	Scenario III
$\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to t\bar{t}$	1.4%	15.0%	_
$b\overline{b}$	9.1%	5.9%	—
$\tilde{\chi}_1^0 \tilde{\chi}_2^0 \to t \bar{t}$	2.5%	12.0%	3.3%
$b\overline{b}$	23.0%	6.9%	1.6%
$\tilde{\chi}^0_1 \tilde{\chi}^0_3 \to t\bar{t}$	_	9.1%	_
$b\overline{b}$	_	5.3%	—
$\tilde{\chi}_1^0 \tilde{\chi}_1^{\pm} \to t\bar{b}$	43.0%	40.0%	0.8%
$c\overline{s}$	—	—	8.5%
$u\bar{d}$	—	—	8.5%
$\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm} \to t\bar{b}$	0.4%	_	0.4%
$c\bar{s}$	0.9%	—	4.6%
$u\bar{d}$	0.9%	_	4.6%

Study three example scenarios in the pMSSM (11 parameters at the TeV scale) featuring different phenomenological aspects Herrmann, Klasen, Kovarik, Meinecke, Steppeler (2014)

— Numerical values obtained using **SPheno** and **micrOMEGAs**

	$m_{ ilde{\chi}_1^0}$	$m_{ ilde{\chi}_2^0}$	$m_{ ilde{\chi}^0_3}$	$m_{ ilde{\chi}_4^0}$	$m_{\tilde{\chi}_1^{\pm}}$	$m_{\tilde{\chi}_2^{\pm}}$	$Z_{1\tilde{B}}$	$Z_{1\tilde{W}}$	$Z_{1 ilde{H}_1}$	$Z_{1\tilde{H}_2}$	m_{h^0}	$\Omega_{ ilde{\chi}_1^0} h^2$
I	738.2	802.4	1288.4	1294.5	802.3	1295.1	-0.996	0.049	-0.059	0.037	126.3	0.1243
II	698.9	850.5	854.0	1940.2	845.6	1940.4	-0.969	0.012	-0.187	0.162	125.2	0.1034
III	1106.7	1114.9	1855.0	1865.6	1109.6	1856.3	0.046	-0.082	0.706	-0.702	126.0	0.1190

	Scenario I	Scenario II	Scenario III
$\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to t\bar{t}$	1.4%	15.0%	_
$b\overline{b}$	9.1%	5.9%	—
$\tilde{\chi}_1^0 \tilde{\chi}_2^0 \to t \bar{t}$	2.5%	12.0%	3.3%
$b\overline{b}$	23.0%	6.9%	1.6%
$\tilde{\chi}^0_1 \tilde{\chi}^0_3 \to t\bar{t}$	_	9.1%	_
$b\overline{b}$	_	5.3%	—
$\tilde{\chi}_1^0 \tilde{\chi}_1^{\pm} \to t\bar{b}$	43.0%	40.0%	0.8%
$c\bar{s}$	_		8.5%
$u \bar{d}$	—	—	8.5%
$\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm} \to t\bar{b}$	0.4%	_	0.4%
$c\overline{s}$	0.9%	_	4.6%
ud	0.9%	_	4.6%

Study three example scenarios in the pMSSM (11 parameters at the TeV scale) featuring different phenomenological aspects Herrmann, Klasen, Kovarik, Meinecke, Steppeler (2014) — Numerical values obtained using **SPheno** and **micrOMEGAs**

	$m_{ ilde{\chi}_1^0}$	$m_{ ilde{\chi}_2^0}$	$m_{ ilde{\chi}^0_3}$	$m_{ ilde{\chi}_4^0}$	$m_{\tilde{\chi}_1^{\pm}}$	$m_{\tilde{\chi}_2^{\pm}}$	$Z_{1\tilde{B}}$	$Z_{1\tilde{W}}$	$Z_{1\tilde{H}_1}$	$Z_{1\tilde{H}_2}$	m_{h^0}	$\Omega_{ ilde{\chi}_1^0} h^2$
Ι	738.2	802.4	1288.4	1294.5	802.3	1295.1	-0.996	0.049	-0.059	0.037	126.3	0.1243
II	698.9	850.5	854.0	1940.2	845.6	1940.4	-0.969	0.012	-0.187	0.162	125.2	0.1034
III	1106.7	1114.9	1855.0	1865.6	1109.6	1856.3	0.046	-0.082	0.706	-0.702	126.0	0.1190

	Scenario I	Scenario II	Scenario III
$\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to t\bar{t}$	1.4%	15.0%	_
$b\overline{b}$	9.1%	5.9%	_
$\tilde{\chi}_1^0 \tilde{\chi}_2^0 \to t \bar{t}$	2.5%	12.0%	3.3%
$b\overline{b}$	23.0%	6.9%	1.6%
$\tilde{\chi}^0_1 \tilde{\chi}^0_3 \to t\bar{t}$	_	9.1%	_
$b\overline{b}$		5.3%	—
$\left[\tilde{\chi}_1^0 \tilde{\chi}_1^\pm \to t \bar{b} \right]$	(43.0%)	40.0%	0.8%
$c\bar{s}$	_	_	8.5%
ud	_	—	8.5%
$\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm} \to t\bar{b}$	0.4%		0.4%
$c\bar{s}$	0.9%	—	4.6%
$u\bar{d}$	0.9%	_	4.6%

Study three example scenarios in the pMSSM (11 parameters at the TeV scale) featuring different phenomenological aspects Herrmann, Klasen, Kovarik, Meinecke, Steppeler (2014) — Numerical values obtained using SPheno and micrOMEGAs

	$m_{ ilde{\chi}_1^0}$	$m_{ ilde{\chi}_2^0}$	$m_{ ilde{\chi}^0_3}$	$m_{ ilde{\chi}_4^0}$	$m_{\tilde{\chi}_1^{\pm}}$	$m_{\tilde{\chi}_2^\pm}$	$Z_{1\tilde{B}}$	$Z_{1\tilde{W}}$	$Z_{1\tilde{H}_1}$	$Z_{1\tilde{H}_2}$	m_{h^0}	$\Omega_{ ilde{\chi}_1^0} h^2$
Ι	738.2	802.4	1288.4	1294.5	802.3	1295.1	-0.996	0.049	-0.059	0.037	126.3	0.1243
II	698.9	850.5	854.0	1940.2	845.6	1940.4	-0.969	0.012	-0.187	0.162	125.2	0.1034
III	1106.7	1114.9	1855.0	1865.6	1109.6	1856.3	0.046	-0.082	0.706	-0.702	126.0	0.1190

Radiative corrections change the (co-)annihilation cross-section by up to 30% — tree-level values differ from micrOMEGAs result due to renormalisation scheme

Radiative corrections change the (co-)annihilation cross-section by **up to 30%** — tree-level values differ from **micrOMEGAs** result due to renormalisation scheme

Radiative corrections change the (co-)annihilation cross-section by **up to 30%** — tree-level values differ from **micrOMEGAs** result due to renormalisation scheme

The change in the cross-section directly reflects in the prediction of the relic density — Numerical impact larger than experimental uncertainty!

$$\Omega_{\rm CDM} h^2 = \frac{m_{\chi} n_{\chi}}{\rho_c} \sim \frac{1}{\langle \sigma_{\rm ann} v \rangle}$$

Herrmann, Klasen, Kovarik, Meinecke, Steppeler (2014)

The change in the cross-section directly reflects in the prediction of the relic density — Numerical impact larger than experimental uncertainty!

$$\Omega_{\rm CDM} h^2 = \frac{m_{\chi} n_{\chi}}{\rho_c} \sim \frac{1}{\langle \sigma_{\rm ann} v \rangle}$$

Herrmann, Klasen, Kovarik, Meinecke, Steppeler (2014)

Herrmann, Klasen, Kovarik (2009)

In summary, ...

- Relic density calculation is a powerful tool to obtain complementary information on the new physics' parameter space w.r.t. collider and precision data
- Improving the theoretical accuracy of relic density prediction is necessary in order to meet the current experimental precision

 $\tilde{\chi}_i^{0,\pm} \tilde{\chi}_j^{0,\pm} \to q\bar{q}') \qquad \left(\tilde{\chi}_i^0 \tilde{q}_j \to qH, qV, qg \right) \qquad \left(\tilde{q}_i \tilde{q}_j^{(*)} \to VV, HH, HV, q\bar{q} \right)$

—The numerical package **DM@NL** allows computation of neutralino (co-)annihilation cross-section including one-loop corrections in QCD

- Link to micrOMEGAs (link to DarkSUSY coming soon...)
- Impact of radiative corrections can numerically be more important than current experimental uncertainty

